

D3.5 Data Processing Services M27 1 / 82

*Type: P: Prototype; R: Report; D: Demonstrator; O: Other; ORDP: Open Research Data Pilot; E: Ethics.

**Security Class: PU: Public; PP: Restricted to other programme participants (including the Commission); RE: Restricted to a group
defined by the consortium (including the Commission); CO: Confidential, only for members of the consortium (including the
Commission).

Title: Document Version:

D3.5 Data processing services M27 1.1

Project Number: Project Acronym: Project Title:

H2020-871493 DataPorts A Data Platform for the Cognitive Ports of the Future

Contractual Delivery Date: Actual Delivery Date: Deliverable Type*-Security*:

M27 (March 2022) M28 (April 2022) O- PU

Responsible: Organisation: Contributing WP:

Andreu Belsa UPV WP3

Authors (organisation):

Andreu Belsa (UPV)

Matilde Julián (UPV)

Carlos E. Palau (UPV)

José Antonio Clemente (PRO)

Héctor Iturria (PRO)

Miguel Bravo (ITI)

Santiago Cáceres (ITI)

Anastasios Nikolakopoulos (ICCS)

Achilleas Marinakis (ICCS)

Vrettos Moulos (ICCS)

George Magafossis (ICCS)

Xhulja Shahini (UDE)

Tristan Kley (UDE)

Pablo Giménez (VPF)

Abstract:

This deliverable describes the implementation of the Semantic Interoperability Component and the Data Abstraction

and Virtualization Component, which constitute the Data Processing Services of the DataPorts Platform. For each of

these components, this document provides a summary of the functionality of the component and its relationships

with other components of the platform, a technological description of the component, which covers its

implementation and main technological challenges, a summary of the current implementation status, including

information about its official release, and the plans, as well as an example of use.

Keywords:

Semantic Interoperability, Data Interoperability, Data Models, Orion Context Broker, Fiware, Ontologies, Metadata

Interoperability, Virtual Data Container, Virtual Data Repository, Data Abstraction and Virtualization

D3.5 Data Processing Services M27 2 / 82

A Data Platform for the Cognitive Ports of the Future

Revision History

This project has received funding from the European Union’s Horizon 2020 Research and Innovation

Programme under Grant Agreement № 871493.

More information available at https://DataPorts-project.eu

Copyright Statement

The work described in this document has been conducted within the DataPorts project. This document
reflects only the DataPorts Consortium view, and the European Union is not responsible for any use that may
be made of the information it contains.

This document and its content are the property of the DataPorts Consortium. All rights relevant to this
document are determined by the applicable laws. Access to this document does not grant any right or license
on the document or its contents. This document or its contents are not to be used or treated in any manner
inconsistent with the rights or interests of the DataPorts Consortium or the Partners detriment and are not
to be disclosed externally without prior written consent from the DataPorts Partners.

Each DataPorts Partner may use this document in conformity with the DataPorts Consortium Grant
Agreement provisions.

Revision Date Description Author (Organisation)

V0.1 07/02/2022 First version of the document Andreu Belsa (UPV), Matilde Julián (UPV)
and Carlos E. Palau (UPV)

V0.2 02/03/2022 Contributions from UPV, PRO and ICCS.
Sections 1,3,4,5 and 6 updated.

Andreu Belsa (UPV), Matilde Julián (UPV),
José Antonio Clemente (PRO), Héctor Iturria
(PRO), Anastasios Nikolakopoulos (ICCS),
Achilleas Marinakis (ICCS), Vrettos Moulos
(ICCS) and George Magafossis (ICCS)

V0.3 11/03/2022 Added contributions from UPV, PRO,
ICCS, ITI, UDE and VPF to Sections 3 and
7. Section 8 added. Section 9 updated.

Andreu Belsa (UPV), Matilde Julián (UPV),
José Antonio Clemente (PRO), Héctor Iturria
(PRO), Anastasios Nikolakopoulos (ICCS),
Achilleas Marinakis (ICCS), Vrettos Moulos
(ICCS), George Magafossis (ICCS), Miguel
Bravo (ITI), Xhulja Shahini (UDE), Tristan
Kley (UDE) and Pablo Giménez (VPF)

V1.0 14/03/2022 Section 10 updated. Pre-submission
check performed.

Andreu Belsa (UPV)), Matilde Julián (UPV)
and Carlos E. Palau (UPV)

V1.1 25/03/2022 Update after review by ITI, EVR and
UniKoblenz

Andreu Belsa (UPV), Matilde Julián (UPV),
Santiago Cáceres (ITI), José Antonio
Clemente (PRO) and Achilleas Marinakis
(ICCS).

https://dataports-project.eu/

D3.5 Data Processing Services M27 3 / 82

A Data Platform for the Cognitive Ports of the Future

INDEX

1 INTRODUCTION 8

1.1 DATAPORTS PROJECT OVERVIEW 8
1.2 DELIVERABLE PURPOSE AND SCOPE 8
1.3 DELIVERABLE CONTEXT 8
1.4 DOCUMENT STRUCTURE 9
1.5 DOCUMENT DEPENDENCIES 10

2 TECHNICAL OBJECTIVES 11

3 POSITION IN THE DATAPORTS ARCHITECTURE 13

4 DATA ACCESS COMPONENT IMPROVEMENTS (M18-M27) 19

4.1 AGENTS NOTIFICATION 19
4.2 DOCKER CONTAINERS MANAGEMENT FOR ON-DEMAND CONTAINERS 20
4.3 NEW TEMPLATES FOR THE DAC 20
4.4 USE OF CYGNUS FOR THE INTEGRATION WITH DAV 21

5 SEMANTIC INTEROPERABILITY COMPONENT 24

5.1 OVERVIEW 24
5.2 TECHNOLOGICAL DESCRIPTION 25
5.2.1 ORION CONTEXT BROKER 26
5.2.2 ON DEMAND COMPONENT 28
5.2.3 COMMON API 29
5.2.4 DEPLOYMENT OF THE COMPONENTS 29
5.2.5 DATA MODELLING PROCESS, DATA MODEL REPOSITORY AND DATAPORTS DATA MODEL 29
5.2.6 ADMINISTRATION USER INTERFACE 31
5.2.7 SUPPORT TOOLS 33
5.3 DEVELOPMENT STATUS (M27) 33
5.4 FUTURE WORK: ROADMAP 35
5.5 EXAMPLE OF USE: DEMONSTRATION 35
5.5.1 DEMONSTRATION OVERVIEW 35
5.5.2 SCENARIO #1: ACCESS TO A GENERIC DATA SOURCE 37
5.5.3 SCENARIO #2: ACCESS TO A DATA SOURCE USING DIFFERENT TYPES OF AGENTS 37
5.5.4 SCENARIO #3: ACCESS TO DIFFERENT DATA SOURCES THAT ARE USING THE SAME DATA MODEL 39
5.5.5 SCENARIO #4: SEND INFORMATION TO THE DATA ABSTRACTION AND VIRTUALIZATION COMPONENT 40
5.5.6 SCENARIO #5: SEND INFORMATION TO THE ANALYTICS SERVICES 41
5.5.7 SCENARIO #6: SEND INFORMATION TO DASHBOARDS, SERVICES OR APPLICATIONS 41

6 DATA ABSTRACTION AND VIRTUALIZATION COMPONENT 43

6.1 OVERVIEW 43
6.2 TECHNOLOGICAL DESCRIPTION 43

D3.5 Data Processing Services M27 4 / 82

A Data Platform for the Cognitive Ports of the Future

6.2.1 (PRE)PROCESSING & FILTERING SOFTWARE (PAFS) 45
6.2.2 VIRTUAL DATA REPOSITORY (VDR) 48
6.2.3 VIRTUAL DATA CONTAINER (VDC) 50
6.3 DEVELOPMENT STATUS (M27) 54
6.4 FUTURE WORK: ROADMAP 55
6.5 EXAMPLE OF USE: DEMONSTRATION 55
6.5.1 INTRODUCTION 55
6.5.2 PRE-PROCESSING, CLEANING AND FILTERING 55
6.5.3 REQUEST VDC TO EXTRACT METADATA OF A DATASET STORED IN VDR 57
6.5.4 REQUEST VDC TO RETRIEVE A DATA POND (VIA FILTERING RULES) IN A SPECIFIC FORMAT 57

7 DATA PROCESSING SERVICES COMMON EXAMPLE OF USE 59

7.1 DEMONSTRATION OVERVIEW 59
7.2 DATA SOURCES 60
7.3 DATA ACCESS COMPONENT 60
7.4 SEMANTIC INTEROPERABILITY 62
7.5 DATA ABSTRACTION AND VIRTUALIZATION 64
7.6 AUTOMATIC MODEL TRAINING ENGINE 65
7.7 PROCESS-BASED ANALYTICS 66

8 RELEASE SUMMARY 68

9 CONCLUSIONS 70

10 REFERENCES AND ACRONYMS 72

10.1 REFERENCES 72
10.2 ACRONYMS 74

11 ANNEX A: METADATA REGISTRY 76

12 ANNEX B: EXTERNAL EVALUATOR REVIEW 79

12.1 EXTERNAL EXPERT REPORT 79
12.1.1 DATA ACCESS AGENTS 79
12.1.2 SEMANTIC INTEROPERABILITY 80
12.1.3 DATA ABSTRACTION AND VIRTUALISATION 80
12.1.4 PROCESS BASED ANALYTICS 80
12.1.5 AUTOMATIC MODELS TRAINING ENGINE 81
12.1.6 FINAL CONCLUSIONS 81
12.2 RESPONSE FROM THE AUTHORS OF THE DELIVERABLE 81

D3.5 Data Processing Services M27 5 / 82

A Data Platform for the Cognitive Ports of the Future

LIST OF FIGURES

Figure 1 - DataPorts project overview ... 8

Figure 2 – DataPorts Platform building blocks .. 13

Figure 3 - Interactions of Semantic Interoperability Component ... 14

Figure 4 - Interactions of Data Abstraction and Virtualization component .. 14

Figure 5 – Connection of a new data source ... 15

Figure 6 – Integration of the Semantic Interoperability component with the Data Access component and Data
Abstraction and Virtualization ... 16

Figure 7 – Integration of the Semantic Interoperability component and the Data Abstraction and
Virtualization with the Automatic Model Training Engine .. 17

Figure 8 – Integration of the Semantic Interoperability component and the Data Abstraction and
Virtualization with the Process-Based Analytics component .. 18

Figure 9 – Notifications received from the agents .. 19

Figure 10 – Example of message sent by an agent .. 20

Figure 11 – Agent templates ... 21

Figure 12 – Integration of the on-demand agents with the DAV component using Cygnus 22

Figure 13 – Example of notification sent to the DAV endpoint ... 23

Figure 14 - Semantic Interoperability Component implementation ... 26

Figure 15 – Relationships between Orion Context Broker and the rest of the components 27

Figure 16 – Relationships between the data managed by Orion and the Data Access Manager 28

Figure 17 – Initial idea for the structure of the Data Model Git repository .. 30

Figure 18 – Domain and subjects of the common Data Model ... 31

Figure 19 – Subjects and entity types of the common Data Model .. 31

Figure 20 – Data sources metadata shown in the Admin UI ... 32

Figure 21 – Admin UI modal box of an example data source.. 32

Figure 22 – Subscriptions in Orion Context Broker (shown in the Admin UI) 32

Figure 23 – Admin UI modal box of a subscription ... 32

Figure 24 – Demonstration overview .. 36

Figure 25 – Available agents (shown in the Data Access Manager UI) ... 37

Figure 26 – Notifications (port call status changes) received in the demo application 37

Figure 27 – Current PCS data (port calls) shown in the demo application .. 38

Figure 28 – Historical PCS data (port calls) shown in the demo application 38

Figure 29 – On-demand agent registered for the example data source ... 39

Figure 30 – Publish/subscribe agent registered for the example data source 39

Figure 31 – Historical weather data obtained from the example data source of Valencia 39

Figure 32 – Combined historical weather data from two of the example data sources (Valencia and
Thessaloniki) .. 40

Figure 33 – Historical weather data obtained from an historical database registry of several locations in

file:///C:/Trabajo/DATAPORTS/Repositorio%20DataPorts/DataPorts%20Interno%20ITI/01-execution/03-Workpackages/WP1%20Coordination%20and%20Management/T1.2%20Quality%20Assurance%20and%20Risk%20Management/DataPorts_D3_5_Data_processing_services_M27_v1_1.docx%23_Toc101521126

D3.5 Data Processing Services M27 6 / 82

A Data Platform for the Cognitive Ports of the Future

Greece ... 40

Figure 34 – On Demand component API ... 41

Figure 35 – Example of Wirecloud marketplace and a widget running using DataPorts data 42

Figure 36 – Apache Spark cluster for the data processing tasks of DAV ... 44

Figure 37 – Apache Nifi for DAV’s interface .. 44

Figure 38 – Data Abstraction and Virtualization functionalities and technologies 45

Figure 39 – PaFS code part of initial filtering & applying of the generic actions 47

Figure 40 – VDC flow to trigger data processing, filtering and transformation jobs upon request 50

Figure 41 – VDC flow for metadata extraction upon request ... 51

Figure 42 – VDC rules system accepted operators .. 52

Figure 43 – Filtering actions requested by AMTE for the Valencia PCS traffic dataset 52

Figure 44 – Filtering rules JSON file example #1 ... 53

Figure 45 – Filtering rules JSON file example #2 ... 53

Figure 46 – Filtering rules JSON file example #3 ... 53

Figure 47 – VDC code part of applying the filtering rules ... 54

Figure 48 – Valencia PCS traffic raw data example ... 56

Figure 49 – Valencia PCS traffic datatypes (Spark schema) .. 56

Figure 50 – Valencia PCS traffic pre-processed and cleaned data example .. 56

Figure 51 – VDC metadata extraction example ... 57

Figure 52 – VDC request body example .. 58

Figure 53 – VDC output data pond example ... 58

Figure 54 – Common demonstration overview ... 60

Figure 55 – Position of the Data Access Component in the demonstration 61

Figure 56 – Position of the Semantic Interoperability Component in the demonstration 62

Figure 57 – Position of the DAV component in the demonstration .. 64

Figure 58 – Rules for the AEAT customs dataset ... 65

Figure 59 – Position of the Automatic Model Training Engine in the demonstration 65

Figure 60 – Position of the Process-Based Analytics component in the demonstration 67

Figure 61 – Metadata registry data model .. 76

LIST OF TABLES

Table 1 – Data sources consumed by the Automatic Model Training Engine and their corresponding agents
 ... 61

Table 2 – Data sources consumed by the Process-Based Analytics component and their corresponding agents
 ... 62

Table 3 – Role of the Semantic Interoperability Component in the access to the Data Sources consumed by
the Automatic Model Training Engine ... 63

Table 4 – Role of the Semantic Interoperability Component in the access to the Data Sources consumed by

D3.5 Data Processing Services M27 7 / 82

A Data Platform for the Cognitive Ports of the Future

the Process-Based Analytics component .. 63

Table 5 – Summary table of Semantic Interoperability Component release information 68

Table 6 – Summary table of Data Abstraction and Virtualization Component release information .. 69

Table 7 – Acronyms ... 75

Table 8 – Data source metadata .. 77

Table 9 – On-demand agent metadata ... 78

Table 10 – Publish/subscribe agent metadata .. 78

D3.5 Data Processing Services M27 8 / 82

A Data Platform for the Cognitive Ports of the Future

1 INTRODUCTION

1.1 DATAPORTS PROJECT OVERVIEW

DataPorts is a project funded by the European Commission as part of the H2020 Big Data Value PPP
programme and coordinated by the ITI - Technological Institute of Informatics. DataPorts relies on the
participation of 13 partners from five different nationalities. The project involves the design and
implementation of a data platform, its deployment in two relevant European seaports connecting to their
existing digital infrastructures and addressing specific local constraints. Furthermore, a global use case
involving these two ports and other actors and targeting inter-port objectives, and all the actions to foster
the adoption of the platform at European level.

Hundreds of different European seaports
collaborate with each other, exchanging
different digital data from several data
sources. However, to achieve efficient
collaboration and benefit from AI-based
technology, a new integrating environment
is needed. To this end, DataPorts project is
designing and implementing an Industrial
Data Platform.

The DataPorts Platform aim is to connect to
the different digital infrastructures
currently existing in digital seaports,
enabling the interconnection of a wide
variety of systems into a tightly integrated
ecosystem. In addition, it intends to set the
policies for a trusted and reliable data
sharing and trading based on data owners’
rules and offering a clear value proposition. Finally, it also strives to leverage on the data collected to provide
advanced Data Analytic services based on which the different actors in the port value chain could develop
novel AI and cognitive applications.

DataPorts will allow establishing a future Data Space unique for all maritime ports of Europe and contribute
to the EC global objective of creating a Common European Data Space.

1.2 DELIVERABLE PURPOSE AND SCOPE

Specifically, the DOA states the following regarding this Deliverable:

“This deliverable will involve the services offered by the platform in the different steps of the data value chain.
It includes the abstraction and virtualization of the collected data, and data semantic interoperability”.

The purpose of this document is to describe the tools and interfaces implemented to provide semantic
interoperability in the DataPorts Platform, as well as the implementation of the services offered by the
platform for data management and virtualization.

1.3 DELIVERABLE CONTEXT

Its relationship to other documents is as follows:

Figure 1 - DataPorts project overview

D3.5 Data Processing Services M27 9 / 82

A Data Platform for the Cognitive Ports of the Future

Primary Preceding documents:

• D2.1 Industrial Data Platforms and seaport community requirements and challenges: Provides the
technical requirements of the DataPorts Platform.

• D2.2 Scalability, Interoperability and Definition Standards: The process of data modelling involves
technical partners working closely with business stakeholders, as well as potential users of the
information system. Both the M18 and M27 versions of this deliverable present the status of this
joint task from the technical point of view. However, the other perspectives of this joint work are
reflected in deliverable D2.2.

• D2.4 Platform architecture and specifications: Provides the architecture and specifications of the
DataPorts Platform.

• D3.1 Data Access Interfaces: The Semantic Interoperability component has significant interactions
with the Data Access component and vice versa. Therefore, it is recommended reading both the D3.1
and D3.5 to capture the complete picture of the joint work between these two components.

• D3.2 Data Processing Services M27: Presents the initial version of the services described in this
deliverable.

• D5.3 Use Case Oriented Pilots Initial Version M24: It provides an overview of the usage of the
different components of the platform in the scenarios implemented in the project demonstration.
For each of the scenarios is described which DataPorts components are used, and which are their
interactions.

1.4 DOCUMENT STRUCTURE

This deliverable is broken down in the following sections:

• Section 1 Introduction: It includes an overview of the project, a short description of the purpose and
scope of this document and the dependencies with other deliverables.

• Section 2 Technical objectives: It explains the technical objectives that each of the components
described in this deliverable fulfils according to the project proposal.

• Section 3 Position in the DataPorts Architecture: It briefly describes the relationships that each of
the components presented in this deliverable has with the rest of the components in the
architecture.

• Section 4 Data Access Component Improvements (M18-M27): it provides an update of the Data
Access Component implementation described in deliverable D3.1 (M18).

• Section 5 Semantic Interoperability Component: It describes in detail the Semantic Interoperability
Component. The description includes an overview of the component, its technological description
and the status and roadmap the component, as well as an example of use in the context of the
DataPorts Platform.

• Section 6 Data Abstraction and Virtualization Component: It describes in detail the Data Abstraction
and Virtualization Component. The description includes an overview of the component, its
technological description and the status and roadmap the component, as well as an example of use
in the context of the DataPorts Platform.

• Section 7 Data Processing Services common example of use: it presents an example of use of the
platform, which shows the integration of the data processing services and relevant analytics services.

• Section 8 Release summary: It provides information of the release of each component described in
this deliverable, including component name, version, source code, documentation, Docker image and
dependencies.

• Section 9 Conclusions: It contains the conclusions regarding the components described in this
deliverable.

D3.5 Data Processing Services M27 10 / 82

A Data Platform for the Cognitive Ports of the Future

Annexes:

• Annex A Metadata Registry: It describes the internal data model of the Metadata Registry
subcomponent.

1.5 DOCUMENT DEPENDENCIES

This document is part of an iteration of living deliverables. The previous version of the document, deliverable

D3.2 Data processing services M18, describes the first iteration of the Data Processing Services offered by

the platform in the different steps of the data value chain. The final version of those services is presented in

this document.

The main sections updated in D3.5 from D3.2 are:

• Section 1 updates the general information of the deliverable to the current period of delivery (M27).

• Section 2 has no changes compared to D3.2.

• Section 3 includes new sequence diagrams describing the data flows between the DataPorts Platform

components with more details.

• Section 4 updates the content of D3.1. This new information is important to understand the way to

retrieve and exchange data of the components described in D3.5 and D3.6.

• Section 5 describes the current version of the Semantic interoperability component and the

DataPorts Data Model including all progress made since M18.

• Section 6 describes the current version of the Data Abstraction and Virtualization component

including all progress made since M18.

• Section 7 offers a new section focused in to show the functional operation of the Data Processing

Services with real data sources and the interaction between the Data Processing Services and the

components described in D3.1 and D3.6.

• Section 8 provides a new section with the technical release information of the components involved

in this deliverable.

• Section 9 updates the deliverable conclusions to the current period of delivery (M27).

D3.5 is delivered in the same period as D3.6 and D3.7. All these deliverables together with the D3.1 (delivered

in the M18) are providing the final design of each component of the platform, mainly including a technical

description and a complete release summary of each component of the platform.

The final version of the DataPorts Platform implementation, according to milestone number 11 of the project,

will be available in M30. The section 8 of this deliverable provides the information about how this material

will be released.

D3.5 Data Processing Services M27 11 / 82

A Data Platform for the Cognitive Ports of the Future

2 TECHNICAL OBJECTIVES

This deliverable describes the implementation of the components called “Data Semantic Interoperability”
and “Data abstraction and virtualization”. The lack of interoperability among data is hampering the real
adoption of data driven solutions in the seaports [1]. There are several challenges related with the
interoperability and integration of data collected from multiple sources that must be addressed to take real
advantage of the existing technical infrastructure and the availability of the huge amount of data generated
by the different stakeholders. Those entail the technical challenges of DataPorts project to make real the
transition of seaports from digital and connected to smart and cognitive. They are summarised in the
following technical objectives of the project:

• O1. “To address real-life data market use cases in two relevant European seaports, two global use
cases and related communities”: The rationale of the components presented in this deliverable is
that the current solutions underutilise (or do not utilise) the existing tools for acquisition,
aggregation, processing, and analysis of the data coming from the different stakeholders, sources
and existing platforms.

• O2. “To design and validate next-generation set of advanced interoperable data related and AI based
services”: The aim of the components presented in this deliverable is to provide the data acquisition
mechanisms, the data sanitisation algorithms to guarantee data quality; the ability of federating data
varying in syntax and semantics; and efficient and effective techniques for data wrapping that will
represent the underlying mechanism for supporting selective release, storage and analytics on data
enabling efficient processing over protected data while preventing (or limiting) access to the actual
data content by other parties.

• O3. “To define an engineering methodology facilitating application of DataPorts architecture and
tools, to support cognitive, privacy-aware and secure data sharing processes”: The aim of the
components involved in this deliverable is to deliver new services and components of the DataPorts
Platform based on the requirements, functionalities and the architecture designed in WP2.

• O4. “To define, design and incorporate a novel, scalable, resilient, semantic approach for data
sharing”: The aim of the components involved in this deliverable is to provide interoperable and
semantic solutions and mechanisms offering support to the Big Data Analytics components of the
platform.

To sum up, the deliverable presents the services offered by the DataPorts Platform that enable the semantic
interoperability and the abstraction and virtualization of the collected data from the different digital
infrastructures currently existing in digital seaports. Those services enable the integration of a wide variety
of systems into a tightly integrated ecosystem and leverage the data collected to be used by advanced Data
Analytics services.

The Semantic Interoperability Component fulfils the following technical objectives of the WP3:

• O3.2. “To define ontologies, mechanisms and enablers to provide semantic interoperability with data
platforms, IoT devices, robots and other data sources, and develop the semantic-based tools needed
to facilitate generation of interfaces for sensing and actuation required in the DataPorts data
platform”.

• O3.3. “To define mechanisms for data management, virtualization including streaming techniques”.
More concretely, the semantic interoperability is focused on facilitating the data management of the
data sources integrated in the DataPorts data platform.

In addition, the Semantic Interoperability Component fulfils the following technical objectives defined by the
task description in the GA:

• Offering a framework for semantic interoperability of diverse data platforms, autonomous systems,
and applications.

D3.5 Data Processing Services M27 12 / 82

A Data Platform for the Cognitive Ports of the Future

• Providing business level interoperability using existing ontologies and developing a semantic
framework for describing ports data together with mappings to standard vocabularies to simplify the
reuse of data apps for analytics and forecasting. This semantic framework will codify domain
knowledge of the domain experts, and thus can be reused and exploited by the data experts directly,
thereby empowering building cognitive port applications.

• Defining and implementing the core mechanisms enabling the deployment of highly distributed Data
Spaces, considering context components.

• Analysing and implementing software mechanisms for retrieving, aggregating, and facilitating the
connection with industrial data spaces from external platform.

The Data Abstraction and Virtualization Component fulfils the following technical objectives of the WP3:

• O3.1 “To identify different data sources to be integrated in the DataPorts data platform, including
the mechanisms to store and facilitate data management”.

• O3.3 “To define mechanisms for data management, virtualization including streaming techniques”.

More concretely, the component aims at implementing an abstraction and virtualization mechanism for data
coming from a variety of diverse sources, supporting Big Data repositories and technologies that can use
structured or non-structured data, relational or NoSQL databases as well as web services and APIs.

In addition, the Data Abstraction and Virtualization Component fulfils the following technical objectives
defined by the task description in the GA:

• Developing a framework for accessing data coming from different and heterogeneous data sources.

• Implementing the Virtual Data Container (VDC) concept.

• Assisting the application developers to focus only on the required data, and letting the proposed
framework to deliver them, thus encapsulating all the underlying technical complexity.

D3.5 Data Processing Services M27 13 / 82

A Data Platform for the Cognitive Ports of the Future

3 POSITION IN THE DATAPORTS ARCHITECTURE

From the services’ perspective of the DataPorts Platform, the “Data Semantic Interoperability” and “Data
Abstraction and Virtualization” are located inside the “Data Processing Services” building block (see Figure
2). This building block also includes the “Data Access Component” (explained in D3.1 [2]), which enables
access to the available data sources. The “Data Processing Services” are exchanging data and metadata with
the “Data Governance Services” described in D3.4 [3] and D3.7 [4], and with the “Analytics Services”
described in D3.6 [5].

Figure 2 – DataPorts Platform building blocks

The position of the Semantic Interoperability Component in the DataPorts architecture, which is described in
detail in D2.4 [6], is shown in Figure 3. The Semantic Interoperability Component acts as a middleware layer
between the Data Access component and the upper layers (Data Abstraction and Virtualization component,
Automatic Model Training Engine and Process-Based Analytics). Hence, in the architecture, the Semantic
Interoperability Component is on top of the Data Access Component and below the components that obtain
the data from its API, such as the Data Abstraction and Virtualization component, the Automatic Model
Training Engine and the Process-Based Analytics component (Figure 2). The API of this component offers
access to the available data and metadata. There are two modes of access to the data: the first one is based
on the use of subscriptions to receive near real-time data, while the second one enables queries on demand
to receive historical data or near real-time data. Moreover, the Semantic Interoperability Component
provides a description and a repository for the DataPorts Data Model and DataPorts Ontology. In addition,
the Semantic Interoperability Component is connected to the Data Governance component to exchange data
source metadata and be able to check the user’s permissions.

D3.5 Data Processing Services M27 14 / 82

A Data Platform for the Cognitive Ports of the Future

Figure 3 - Interactions of Semantic Interoperability Component

The Data Abstraction & Virtualization (DAV) component receives data from the Data Access and Semantic
Interoperability layers, as well as any possible data provider that resides outside these two components. On
the other hand, DAV provides data to the analytics components. To summarise, DAV serves as a link between
DataPorts principal data providers and consumers, by gaining persistent data input (mostly from the
Semantic Interoperability layer) and forwarding these streams to any interested recipient. The position of
DAV with respect to other components of the DataPorts architecture is shown in Figure 4. The internal
structure of DAV as well as its functionalities, which are also depicted in that figure, are analysed in Section
6.

Figure 4 - Interactions of Data Abstraction and Virtualization component

Regarding the details of the integrations described above, the data flows for typical scenarios involving data
provider and data consumers have been defined to illustrate how the components interact with each other.
The first of these flows describes the process of connecting a new data source to the platform. According to
this flow, when a new data source is made available (Figure 5), the user creates the corresponding agent in
the Data Access Component and defines the data governance metadata in the Data Governance component.
Next, the metadata of the data source and its corresponding agent (or agents) is stored locally in the Semantic

D3.5 Data Processing Services M27 15 / 82

A Data Platform for the Cognitive Ports of the Future

Interoperability component. Next, the Semantic Interoperability component sends the data source metadata
to the Data Governance (through a subscription), where it is combined with the data governance metadata
regarding the access permissions provided by the user. The Data Governance component and its integration
with Semantic Interoperability, as well as the role of the Identity Manager shown in Figure 5, are described
in detail in deliverable D3.7 [4].

Figure 5 – Connection of a new data source

Once the data source has been registered, the data is available for the upper layers (provided that the user
has the proper permissions). One of such components is DAV component, which obtains the historical data
from the Semantic Interoperability component and the Data Access component (Figure 6), pre-processes it
and puts the result in a temporary storage to make it available for the Data Analytics services. More details
of the integration of the DAV component with the Semantic Interoperability component and the Data Access
component are explained in Section 4.4.

D3.5 Data Processing Services M27 16 / 82

A Data Platform for the Cognitive Ports of the Future

Figure 6 – Integration of the Semantic Interoperability component with the Data Access component and Data
Abstraction and Virtualization

The components that provide AI services, such as the Automatic Model Training Engine or the Process-Based
Analytics component, can request a pre-processed dataset to the DAV component to train a model (Figure 7
and Figure 8). Finally, the trained model will be able to either perform predictions based on the historical
data or call the Semantic Interoperability component to request the current values that will be processed to
provide a result. The Automatic Model Training Engine and the Process-Based Analytics component are
described in detail in deliverable D3.6 [5]. Moreover, Section 7 presents an example of how the integration
between the Data Processing Services and the Data Analytics Services would work in a scenario of the pilots.

D3.5 Data Processing Services M27 17 / 82

A Data Platform for the Cognitive Ports of the Future

Figure 7 – Integration of the Semantic Interoperability component and the Data Abstraction and Virtualization
with the Automatic Model Training Engine

D3.5 Data Processing Services M27 18 / 82

A Data Platform for the Cognitive Ports of the Future

Figure 8 – Integration of the Semantic Interoperability component and the Data Abstraction and Virtualization
with the Process-Based Analytics component

D3.5 Data Processing Services M27 19 / 82

A Data Platform for the Cognitive Ports of the Future

4 DATA ACCESS COMPONENT IMPROVEMENTS (M18-M27)

The development of Data Access Component (T3.1) was completed in M18. However, several improvements
have been developed in recent months (M18 – M27). These improvements were not only aimed at improving
or completing the component, but also at facilitating integration with the higher layers (DAV).

These improvements include:

• Agent notifications

• Docker containers management for On-demand agents

• New templates for the component

• Use of Cygnus for integration with Data Abstraction and Virtualization

These improvements will be explained in the following subsections.

4.1 AGENTS NOTIFICATION

A mechanism to overview the status of the agents has been implemented. This mechanism is based on the
use of notifications that the agents send to the Data Access Manager to inform of the actions performed
(start, send data, finish) or if an error occurs. This mechanism makes use of an API developed on the DAC
server. It receives the actions that are being executed on the agents. Each time a notification is received; it is
sent to the UI via web socket and is displayed in the correct layout. To display this information, the Log view
has been developed. Next picture depicts that view, where it is possible to see the notifications received the
container they are associated with and the type of action they correspond to.

Figure 9 – Notifications received from the agents

It is even possible to see the message sent to ORION (in case of a publish-subscribe agent) or to Cygnus1 (in
case of On-demand agent). By clicking on the Message sent button, it is possible to see the content of the
message, as shown in the following figure.

1 https://fiware-cygnus.readthedocs.io/en/latest/

D3.5 Data Processing Services M27 20 / 82

A Data Platform for the Cognitive Ports of the Future

Figure 10 – Example of message sent by an agent

4.2 DOCKER CONTAINERS MANAGEMENT FOR ON-DEMAND CONTAINERS

On-demand agents are designed for large volumes of data. Therefore, they are usually executed only once.
After this, the container must be deleted.

In the first version of DAC, the management of these containers was not done automatically. There was a
process in background that checked every 10 minutes if an on-demand agent had finished and was still
running. If so, the container was deleted. The agent management functionality has been improved in the
current version of the component, in which the agent itself oversees its execution and sends notifications to
the Data Access Manager to announce when the execution starts and when it ends or if an error occurs. Once
the agent has been executed, the agent itself is in charge of ending its execution. This mechanism is more
efficient than the previous one because it reduces the consumption of resources by keeping processes
running once they have finished.

4.3 NEW TEMPLATES FOR THE DAC

The DAC has a wizard with a series of templates to facilitate the creation of agents. This suite of templates
must be aligned with the development of the agents (WP5). Therefore, the number of templates will increase
according to the needs of the agents to be developed. Since the delivery of the component (M18) until now,
more templates have been included in the wizard. The list of available templates can be seen in the following
image.

D3.5 Data Processing Services M27 21 / 82

A Data Platform for the Cognitive Ports of the Future

Figure 11 – Agent templates

The templates shown in the image above are for:

• API. Creates an agent that connects to an API. This type of template allows the creation of both types
of agents (publish/subscribe and on-demand).

• LOCAL TXT FILE. Creates an agent that reads the content of a local txt file. This agent is an on-demand
agent.

• LOCAL EXCEL FILE. Creates an agent that reads the content of a local excel file. This agent could be
publish/subscribe and on-demand.

• MQTT LISTENER. This agent is a listener. So, it is an agent that is waiting data from a MQTT server.
The template creates a publish/subscribe agent.

• API LISTENER. This agent is a listener. In that case, reads data from an endpoint. The template creates
a publish/subscribe agent.

• RABBITMQ LISTENER. This agent is also a listener. The agent is waiting data coming from a RABBITMQ
server. This is a publish/subscribe agent.

4.4 USE OF CYGNUS FOR THE INTEGRATION WITH DAV

On-demand agents are not integrated with ORION. Their data are sent to the DAV. When dealing with large
volumes of data it was very common to get the following error: ‘Request entity too large’. Therefore, the
data is sent divided into blocks of 100 entities. This resulted in having the data at the destination divided into
blocks. Some mechanism has to be devised to re-integrate those blocks and have the complete entity.

D3.5 Data Processing Services M27 22 / 82

A Data Platform for the Cognitive Ports of the Future

Therefore, it was decided to make use of Fiware Cygnus, which is based on Apache Flume2, to reassemble
the historical data (Figure 12).

Figure 12 – Integration of the on-demand agents with the DAV component using Cygnus

This implementation of Cygnus makes use of MongoDB. All blocks sent to Cygnus are inserted into the same
collection if the 'id' field of the data model is not changed. This allows having the data assembled as it was at
the beginning.

As this process of sending data to Cygnus can take quite long time depending on the volume of data, an API
has been developed that informs the DAV that the data transfer has been completed. The name of this
endpoint is datanotify. Next picture depicts an example with the properties that are sent using this endpoint.
Properties such as:

• id: Identifier of the data model sent to Cygnus

• type: Type property of the data model

• cygnus_collection: Name of the collection where the entities are stored

• cygnus_database: Name of the database used in MongoDB (by default is always db_default)

2 http://flume.apache.org/

D3.5 Data Processing Services M27 23 / 82

A Data Platform for the Cognitive Ports of the Future

• total: Total number of records inserted

Figure 13 – Example of notification sent to the DAV endpoint

D3.5 Data Processing Services M27 24 / 82

A Data Platform for the Cognitive Ports of the Future

5 SEMANTIC INTEROPERABILITY COMPONENT

This section covers the implementation status of the “Semantic Interoperability Component” in M27 of the
project. This component provides a unified API to access the data from the different data sources, as well as
a common data model that provides a common understanding of the data; this way, it enables semantic
interoperability. The Semantic Interoperability Component has been described from a technical point of view
in deliverables D3.2 [16] and D2.4 [6]. Since the present document is an update to D3.2, the focus will be
placed on providing an overview of the implementation of the component and the involved technologies.
Hence, the following subsections explain the relevance of the Orion Context Broker3 and the Fiware
Ecosystem4, the software pieces developed, the internal data model definition, the current interaction
achieved with other components and the data modelling process defined in the DataPorts project. Section
5.4 covers the expected actions that will be carried out after the release of the platform in M30. Finally,
Section 5.5 offers an example scenario to describe in a visual way the functionalities of this component and
its interactions with other components of the platform.

5.1 OVERVIEW

The component is a semantic middleware that collects and distributes the data and metadata obtained by
the agents deployed in the Data Access Component to the different components of the platform. This layer
offers the mechanisms, enablers, and ontologies to achieve semantic interoperability. Specifically, the
component offers a framework and API to describe and provide ports’ data together with mappings to
standard vocabularies to simplify the reuse of data by other applications and components.

The component mainly performs the following actions:

• Stores locally the metadata of the Data Sources in the Metadata Registry and provides an interface
to make the metadata available for all the internal components of the DataPorts Platform.

• Distributes the data to the components of the upper layers. With this aim, it provides:

• An interface for publishing and subscribing streams of data.

• An interface for obtaining data on demand. This includes both historical data and last values.

• Validates that the data sent to the data consumers follow the DataPorts Data Model.

• Offers a repository with the DataPorts common Data Model.

• Registers the available data sources in the Data Governance component to provide a description of
the data sources for the data consumers from other organisations.

• Interacts with the environment defined in WP4 corresponding with the Data Governance and
Security of the DataPorts Platform to enforce the defined access policies and provide a secure access
to the data.

Since the “Semantic Interoperability Component” is a middleware component of the platform, its main
responsibility is to interact with the rest of the components. This interaction should be done in an efficient
and effective way, this means without supposing a bottleneck in the exchange of information between the
internal components. This is a fact that must be highlighted and that makes the component a key part of the
DataPorts Platform. These relationships have been analysed within the framework of WP2, specifically,
during requirements gathering, analysis of expected functionalities, specifications, and architecture design
phases. The corresponding WP2 deliverables, like D2.1 [7] and D2.4 [6], provide concrete details about those
phases. However, an important part of the work during this period has been the definition of these

3 https://fiware-orion.readthedocs.io/en/master/

4 https://www.fiware.org/

D3.5 Data Processing Services M27 25 / 82

A Data Platform for the Cognitive Ports of the Future

relationships from a technical point of view, with the objective of ensuring that the pieces of the platform fit
together during the implementation process.

This is mainly illustrated in a joint work with the Data Access component to provide both components fully
integrated with each other. The components obtained from these two tasks have major interactions, for
example, joint deployments, the use of the same internal data model, common databases, common graphical
interface, etc. For this reason, it is difficult to understand the Semantic Interoperability component without
the Data Access component and vice versa. Therefore, it is recommended to read both the D3.1 [2] and D3.5
to get the full picture of this joint work.

The technical relationships with the rest of the tasks have been outlined in Section 3. During this period, the
joint effort has been focused on ensuring that the API specifications meet the expected requirements, as well
as the integration between the Semantic Interoperability component and the other components of the
platform. The use of the API will be illustrated in more detail in the descriptions of the components that make
use of it, such as the DAV component (described Section 6 of this document) or the Data Analytics services
and Cognitive applications (presented in deliverable D3.6 [5]).

Finally, a joint task with the WP2, WP3 and WP5 of the project has been carried out with the aim of offering
the common Data Model for the project. Data modelling is a process used to define and analyse data
requirements needed to support the business processes within the scope of the corresponding information
systems. Therefore, the process of data modelling involves technical partners working closely with business
stakeholders, as well as potential users of the information system. The status of this joint task from the
technical point of view was reported in the previous version of this deliverable in M18 and is now updated in
the present document. The other perspectives of this joint work have been described in D2.2 “Scalability,
Interoperability and Definition Standards” (M24) [8] and will be reflected also in the results of the WP5 use
cases.

5.2 TECHNOLOGICAL DESCRIPTION

The different blocks that comprise the implementation of the Semantic Interoperability Component are
shown in Figure 14. The mappings between the subcomponents of the Semantic Interoperability Component
(Figure 3) and the technologies used in their implementation are as follows:

• Middleware Broker: Developed using Orion Context Broker and MongoDB. The subcomponents
defined for this block are:

• Semantic Broker: The development is focused on an integration with the Data Access Agents
(explained in D3.1 [2]) and Orion Context Broker.

• Metadata Registry: The development is focused on an integration with the Data Access
Manager (explained in D3.1 [2]), the Data Access Agents (explained in D3.1 [2]) and Orion
Context Broker.

• Publish/Subscribe: The subscription mechanism is covered by the functionalities provided
by Orion Context Broker. The development effort was focused on the integration with the
Data Access Agents (explained in D3.1 [2]).

• On Demand component: Is a specific tool developed in Java. The development effort was also
focused on an integration with the Data Access Agents (explained in D3.1 [2]) and the Data Access
Manager (explained in D3.1 [2]).

• DataPorts Data Model: Is hosted in the project Git repository, with a specific organisation and
guidelines. The development of the data model has been based on a data modelling methodology
defined during the project.

• Semantic Interoperability API: Each subcomponent of the Semantic Interoperability Component has
its own interface. Their specification is done in Swagger. The interfaces are deployed together using
an API Gateway.

D3.5 Data Processing Services M27 26 / 82

A Data Platform for the Cognitive Ports of the Future

Figure 14 - Semantic Interoperability Component implementation

In addition, other complementary software elements have been developed:

• Admin User Interface: Developed in Element and Node.js. This interface has been integrated in the
User Interface of the Data Access Manager component (explained in D3.1 [2]).

• Support tools: Are a set of pieces of code to support transformations, validations or other specific
tasks related with Semantic Interoperability component developed in Java, Python, Node.JS and
Angular.

The following subsections provide more specific details of the technology stack.

5.2.1 Orion Context Broker

As a result of the analysis of the requirements and the state-of-the-art of scientific literature, technologies
and related EU projects presented in deliverables D2.1 [7], D2.2 [8] and D2.4 [6], the Orion Context Broker5,
which also constitutes the main component in a Powered by Fiware6 platform, was selected as the core
element of the Semantic Interoperability component. The Context Broker is a digital platform component
that enables the integration of gathered data including insights for further exploitation. It is important to
note that now Orion Context Broker is one of the building blocks of the Connecting Europe Facility (CEF)
Digital catalogue7. The CEF building blocks provide basic capabilities that can be reused in any European
project to ensure interoperability between IT systems and facilitate the implementation of services across
borders and sectors. In addition, Fiware NGSI v2 specifications, which are implemented in Orion Context
Broker, are compatible with the Context Information Management API standard (NGSI-LD) set by the
European Telecommunications Standards Institute (ETSI) [9]. It is important to note that the final version of
the common DataPorts Data Model will describe the different entity types both in NGSI v2 and NGSI-LD
(Section 5.2.5).

FIWARE Foundation and its Community have been actively contributing to the development of the
International Data Spaces Association Reference Architecture Model (IDS-RAM 3.0). Furthermore, the Fiware
Foundation is one of the members of the Data Spaces Business Alliance. The alliance aims to drive the
adoption of data spaces across Europe and beyond and is composed by Gaia-X, the Big Data Value Association
(BDVA), FIWARE Foundation, and the International Data Spaces Association (IDSA) [10]. The Alliance focuses
on three major areas:

• Technology and architecture: definition of a common reference model, based on existing
architectures and models.

5 https://fiware-orion.readthedocs.io/en/master/

6 https://www.fiware.org/

7 CEF Digital Home (europa.eu)

D3.5 Data Processing Services M27 27 / 82

A Data Platform for the Cognitive Ports of the Future

• Support: provision of resources for the existing organizations and data spaces by pooling their tools,
resources and expertise in a focused way.

• Identification and characterization: establishment of a ‘Data Spaces Radar’ to actively scout potential
data spaces.

More specifically, the Orion Context Broker is a key element for the representation of the data sources and
concepts relevant to the specific problem tackled. Northbound to the Context Broker, several tools are
targeted to support real-time big data processing of the streams of history data generated as digital
information evolves over time. The Smart Data Models initiative, launched by the FIWARE Foundation,
provides a library of Data Models described in JSON/JSON-LD format which are compatible respectively with
the NGSIv2/NGSI-LD APIs to ease the development of portable and interoperable smart solutions in a faster,
easier and affordable way, avoiding vendor lock-in scenarios. Data Models published under the initiative are
compatible with schema.org and comply with other existing de-facto sectoral standards when they exist.
They solve one major issue developers are facing, that is the fact that a given data model specification may
be mapped into JSON/JSON-LD in many ways, all of them valid. Smart Data Models initiative facilitates to
developers rely on concrete mappings into JSON/JSON-LD, compatible with the NGSIv2/NGSI-LD APIs, that
are made available within this library, avoiding interoperability problems derived from alternative mappings
[11].

During the first period of the project the Orion Context Broker has been selected as the technological choice
to implement the broker. It provides the FIWARE NGSI v2 API which is a Restful API enabling to perform
updates, queries or subscribe to changes on context information. However, in the second stage of the project,
the Orion-LD Context Broker8 has been selected as preferable option. This is because it provides an
implementation that now is supporting the ETSI NGSI-LD 1.3.1. API specification. It is currently a fork of the
original Orion Context Broker extending support to add NGSI-LD and linked data concepts. For that reason,
it implements both NGSI-LD and NGSI-v2 APIs.

As Figure 15 shows, Orion manages the data flows from the agents to the components that act as data
consumers and provides a NGSI9 interface. The data managed by Orion is stored in MongoDB10. It is important
to note that only the last value of each entity is stored. Orion provides a publish/subscribe interface. In
addition, the Metadata Registry, which stores locally the metadata of the connected data sources and agents,
is managed by Orion. The data provided by Orion follows the DataPorts Data Model (Section 5.2.5).

Figure 15 – Relationships between Orion Context Broker and the rest of the components

8 https://fiware-academy.readthedocs.io/en/latest/core/orion-ld/index.html

9 https://fiware.github.io/specifications/ngsiv2/stable/

10 https://www.mongodb.com/

D3.5 Data Processing Services M27 28 / 82

A Data Platform for the Cognitive Ports of the Future

Regarding the Metadata Registry, the metadata is stored in a separate database in MongoDB, named
“metadata”, which corresponds with the Fiware Service11 value “metadata”. The metadata registry data
model includes three data types: “DataSource”, “AgentImage” (for the metadata of the on-demand agents)
and “AgentContainer” (for the metadata of the publish/subscribe agents); ANNEX A: METADATA REGISTRY
provides more details about the metadata. The Semantic Interoperability Component is closely related with
the Data Access Component, which is described in detail in deliverable D3.1 [2]. Figure 16 shows a high-level
view of the different types of data stored in Orion (including the metadata) as well as the relationships
between the data managed by the Semantic Interoperability Component and the data managed by the Data
Access Manager, which is part of the Data Access Component. Note that a generic type “Data” has been
included in the figure to illustrate the actual data obtained from a data source and represented following the
DataPorts Data Model.

Figure 16 – Relationships between the data managed by Orion and the Data Access Manager

5.2.2 On Demand component

Since the Orion Context Broker only stores the last value of each entity, the On Demand component has been
implemented to provide a complementary way to access to the data following an on-demand approach. It
includes queries to data sources, like databases, API, or files, that could have historical attributes and offer a
huge amount of data related with the same context entity. In addition, this on-demand component provides
access to the current contextual values of the entities. This component exposes a REST API, which enables
historical data requests, and in addition, it also provides access to the current values using the last values’
request. This component is integrated with Orion for accessing the metadata registry and for the last values’
requests. Moreover, it communicates with the Data Access component to perform the historical data
requests through the on-demand agents. To perform a historical data request, the On Demand component
sends a request to the Data Access manager to activate the corresponding on demand agent. Next, the on-
demand agent will retrieve the data, translate it and send it to the call-back URL provided in the request,
which will typically correspond to an instance of Fiware Cygnus (Section 4.4). It is possible that a single
request requires more than one on demand agent to retrieve the data; in that case, the On Demand
component will identify the required agents and send the necessary requests to the Data Access Manager.
The On Demand component has been implemented in Java and its API has been described in Swagger12.

11 https://fiware-orion.readthedocs.io/en/master/user/multitenancy/

12 https://swagger.io/specification/

D3.5 Data Processing Services M27 29 / 82

A Data Platform for the Cognitive Ports of the Future

5.2.3 Common API

A unified REST API exposes the functions of the Orion Context Broker and the On Demand component. This
interface has been implemented using an API gateway, which also provides security by enabling encryption
(HTTPS) and performing the communication with the Identity Manager to enable authentication. In addition,
it exposes an integrated Swagger description of the Semantic Interoperability Component API. The interfaces
covered by the common API are the following:

• Related with the Metadata Registry, the API provides methods for the management of the metadata
of the data sources and agents. This includes methods for registering agents and data sources, as
well as methods for listing/querying/obtaining the details of an agent or a data source, which include
both pull and push mechanisms, and methods for updating or deleting the metadata.

• Related with the On Demand component, the API provides methods for obtaining the current values
of the entities, as well as the historical data.

• Related with the Publish/Subscribe Component, the API provides methods for creating subscriptions
to the entities, as well as subscription management methods (list subscriptions, retrieve information
of a subscription, update/delete subscription).

5.2.4 Deployment of the components

Regarding the deployment of the Semantic Interoperability component, Orion Context Broker, the On
Demand component and the Semantic Interoperability API are deployed using Docker13. These components
can be deployed together using docker-compose14. Regarding the Docker images, a precompiled image of
the On Demand component is available to ease the deployment of the Semantic Interoperability component.
Also, the official Docker images of Orion Context Broker and the API gateway are available on DockerHub15.
Nevertheless, a Dockerfile is provided with the source code of the On Demand component to allow the
creation of custom images (or snapshot images) of the component.

Since there is a close relationship between the Semantic Interoperability component and the Data Access
Manager, these two components should be deployed together in order to provide access to the data sources
using the Semantic Interoperability API.

5.2.5 Data Modelling process, Data Model Repository and DataPorts Data Model

The DataPorts Data Model is a key element to enable interoperability since it defines a common
representation of the information in the DataPorts Platform. The Data Model has been defined considering
the application domain, the needs of the pilots and the existing ontologies and data models related with the
domains that must be covered by the DataPorts Data Model. The methodology that has been followed to
define the Data Model is based on principles provided from other initiatives [12] [13] and comprises the
following steps:

1. Identifying the key concepts needed in the Data Model from the scenarios defined in the pilots (which
were introduced in deliverable D5.1 [14]).

2. Classifying those concepts as entities, attributes, and relationships.
3. Creating UML diagrams representing the resulting entities and relationships for each of the scenarios

of the pilots.
4. Combining the results of the analysis of the scenarios to obtain a high-level view of the Data Model.
5. Classifying the entities of the common Data Model into a set of domains and subjects.

13 https://www.docker.com/

14 https://docs.docker.com/compose/

15 https://hub.docker.com/

D3.5 Data Processing Services M27 30 / 82

A Data Platform for the Cognitive Ports of the Future

6. Analysing the existing ontologies describing the identified domains and subjects to find out which
definitions could be reused in the DataPorts Data Model.

7. Defining the detailed specifications of the Data Model.

The DataPorts Data Model integrates concepts from existing ontologies and data models, including the
Fiware Smart Data Models16, the UN/CEFACT17 data model, the SAREF18 ontology and the IDSA Information
Model19. The common Data Model is hosted in a Git repository, which contains the corresponding JSON
schema documents describing the syntax in NGSI, as well as the documentation and examples. For each class
in the Data Model, normalised (NGSI v2) and simplified (JSON) examples are provided. The Data Model
documentation will include equivalence tables to describe the mappings between the DataPorts Data Model
and the existing ontologies integrated in the Data Model. In addition, the documentation will include the
description of the Data Model using UML diagrams. According to the roadmap, the final version of the Data
Model will be based on NGSI-LD20, following the context information management standard defined by the
ETSI (Section 5.2.1). Thus, once NGSI-LD has been adopted, the Data Model repository will include JSON-LD
context documents, as well as NGSI-LD and JSON-LD examples, in addition to the current descriptions and
examples. It is important to note that the NGSI-LD context facilitates the reuse of the existing Smart Data
Models to create data models for new scenarios in the following ways:

• The existing concepts can be extended with new attributes or metadata.

• New concepts can be defined as subclasses of existing concepts.

• Since some attributes of the existing concepts are optional, the attributes that are not valid for a
particular scenario can be removed. Similarly, the enumerated values that are redundant in a
particular scenario can be removed from the NGSI-LD context.

Figure 17 – Initial idea for the structure of the Data Model Git repository

The concepts defined in the Data Model have been organised by domain and subject, and this hierarchy is
reflected in the organisation of the Data Model repository. This structure has been designed with the
objective of facilitating the future integration of the DataPorts Data Model with the Smart Data Models
initiative21, which is a Fiware-related initiative for the publication of the models, describing data that
participants of data spaces can exchange. Thus, the Git repository22 has a tree structure similar to the one of

16 https://www.fiware.org/developers/data-models/

17 https://umm-dev.org/about-umm/

18 https://saref.etsi.org/

19 https://github.com/International-Data-Spaces-Association/InformationModel

20 https://www.etsi.org/committee/cim?jjj=1620912114757

21 https://smartdatamodels.org/

22 https://egitlab.iti.es/dataports/data_processing/datamodel

D3.5 Data Processing Services M27 31 / 82

A Data Platform for the Cognitive Ports of the Future

the Smart Data Models Git repositories (Figure 17), in which the root (Umbrella repository) provides access
to the repositories of the different domains and contains general information and guidelines, as well as
common definitions and resources. As a result of the previous analysis, only one domain (Smart Ports) has
been identified. This domain provides access to a set of subjects (Figure 18) and contains shared information
and resources of the domain. Similarly, each subject contains folders for each of its entity types (Figure 19),
as well as shared information and resources of the subject, such as the NGSI-LD context document, where
the rules to interpret the data according to the ontology are described. Finally, the specifications, examples,
and information of each entity type are provided in its corresponding folder. Finally, each entity type defined
in the Data Model will go through two states: incubated (that is, with existing specifications but not officially
adopted by the pilots) and adopted (consolidated entity definitions being actively used in DataPorts).

Figure 18 – Domain and subjects of the common Data Model

Figure 19 – Subjects and entity types of the common Data Model

5.2.6 Administration User Interface

To facilitate the management of the data sources and the subscriptions, an administration User Interface has
been developed. This interface provides a general view of the connected data sources (Figure 20), as well as
the metadata of the selected data source (Figure 21) and information about which registered agents can be
used for accessing the data source. Similarly, the Admin UI provides a general view of the existing
subscriptions (Figure 22), as well as the detailed information of the selected subscription (Figure 23). The
Administration UI has been integrated with the Data Access Manager web UI (described in D3.1 [2]) in a new
tab called “Orion”. Section 5.5 contains some examples of the use of this interface.

D3.5 Data Processing Services M27 32 / 82

A Data Platform for the Cognitive Ports of the Future

Figure 20 – Data sources metadata shown in the Admin UI

Figure 21 – Admin UI modal box of an example data source

Figure 22 – Subscriptions in Orion Context Broker (shown in the Admin UI)

Figure 23 – Admin UI modal box of a subscription

D3.5 Data Processing Services M27 33 / 82

A Data Platform for the Cognitive Ports of the Future

5.2.7 Support tools

In addition to the components described in the previous subsections, a set of support tools are provided to
facilitate the learning and adoption of the Semantic Interoperability component. This category includes the
following tools:

• Graphical tool for testing, learning and validation: this tool has been developed to allow an easy way
to visualise the data. This tool is different from the Administration UI presented in Section 5.2.6,
which is focused on the metadata, while the objective of the tool presented in this section is to
provide a graphical tool that makes use of the API operations presented in Section 5.2.3 to access
the data. Hence, this tool offers access to the historical data and last values, as well as access to near
real-time data using subscriptions. In addition, the tool offers widgets to create simple visualisations
of the data; however, it would be necessary to modify the source code of the application to adapt
the visualisation to the specific type of data. This tool can be used for testing, demonstration or
learning purposes. The demonstration presented in Section 5.5 makes use of this tool to illustrate
several scenarios.

• Data Modelling and Validation tools:

• Data model definition template: is an Excel file that can be converted to a JSON schema. It allows
the definition of new entities of the Data Model in an easy way.

• JSON schema generator: is a Python script that generates the JSON schema of an entity type
from the input provided in the Excel template.

• JSON schema validation tool: checks if the provided JSON schema is valid.

• Data format validation tool (based on JSON schema): checks if the data follow the definition of
the entity type provided in the Data Model.

• JSON to JSON schema converter: generates the JSON schema that describes the input data. This
tool allows the definition of the JSON schema of an entity type using an example as input.

• Node-RED nodes23 for the main functions of the Semantic Interoperability API, which will support the

authentication with the Identity Manager of the DataPorts platform.

5.3 DEVELOPMENT STATUS (M27)

As indicated in previous sections, the development of the components follows the requirements and
functionalities described in D2.1 [7] and D2.4 [6], respectively. The first functional version of the component
was delivered in M18. The work during that first period was mainly centred on the interaction with T3.1
because this task ended in the M18 of the project. The objective was to offer a joint deployment that
guarantees a functional Data Access Layer through an interoperable API. After M18, the development effort
was focused on the data model, as well as the integration with the Data Governance and the upper layers of
the platform.

As a result of these efforts, the Semantic Interoperability Component has been developed. The component
is integrated with the Data Access Component, as well as the upper layers of the platform, and ready to be
used by the WP5 Use Cases and the applications built on top of the platform. The implementation of the
component includes the following features:

• Framework to describe and provide ports data together with mappings to standard vocabularies.

• Orion Context Broker as core component, using NGSI v2. The final version of the component will
make use of Orion-LD as core component, which is an evolution of Orion Context Broker that
supports NGSI-LD in addition to NGSI v2. The motivation is that ETSI NGSI-LD is implemented as a
standard mechanism for effective data exchange between different stakeholders.

23 https://flows.nodered.org/

D3.5 Data Processing Services M27 34 / 82

A Data Platform for the Cognitive Ports of the Future

• Common interoperable API available providing the interfaces listed in Section 5.2.3.

• Metadata Registry, implemented according to the internal data model (ANNEX A: METADATA
REGISTRY).

• Functional integration with the Data Access Manager following the defined internal data model.

• Functional integration with the Data Access Agents. It guarantees the acquisition and distribution of
data and metadata from the heterogeneous data sources using the Semantic Interoperability API.

• Publish/subscribe interface, provided by the Orion Context Broker.

• Access to data on demand, enabled by the On Demand component. This includes access to historical
data and current values.

• Unified packaging and deployment on Docker together with the Data Access Component. The
components can be deployed in a PC, Server, Cloud Infrastructure or in a Raspberry Pi.

• Admin User Interface to visualise the information of the metadata registry and the subscriptions
available. This interface has been integrated with the Data Access Manager User Interface.

• A set of support tools developed to facilitate the use and learning of the component.

In addition, the following development and integration tasks have been carried out:

• Definition and development of the internal Data Model of the component. Provision of data
modelling support tools to facilitate the implementation of the common data model.

• Definition of the common DataPorts data model following a data modelling methodology defined in
the previous period, as well as the guidelines for the specifications of the entity types and the
repositories. The definition of the common Data Model has been achieved through a joint work with
WP2, WP3 and WP5 partners. Defining NGSI-LD specifications of the DataPorts Data Model. Provision
of support tools for the adaptation of the common data model to NGSI-LD.

• Integration of the Semantic Component API in the DataPorts Platform common API.

• Initial integration of the Semantic Interoperability component with the security and data governance
blocks of the DataPorts platform.

• Integration between the Metadata Registry and the Data Governance component.

• Implementation of a graphical testing tool to validate, demonstrate, and teach about the
functionalities of the component.

• Integration between the components implemented in Tasks T3.2 (Semantic Interoperability
Component) and T3.3 (Data Abstraction and Virtualization component).

• Integration of the component with external added value services like Node-RED24, Apache NiFi25,
CKAN26, Wirecloud27, etc.

Regarding the plan versions of the Semantic Interoperability Component until M30 (final release of the
platform), the roadmap consists of the following expected tasks:

• Complete integration of the Semantic Interoperability Component with Privacy, Security and
Blockchain. This task will be carried out in collaboration with WP4.

• Improving the Semantic Interoperability component implementation during the Use Cases
deployment period considering the needs that may arise during that period. Improving the ease of
use. Offering several releases of the component.

• The adoption of the NGSI-LD meta-model formally defines the following NGSI-LD foundational
concepts (Entities, Relationships, Properties) based on RDF/RDFS/OWL and JSON-LD in the DataPorts

24 https://nodered.org/

25 https://nifi.apache.org/

26 https://fiware-ckan-extensions.readthedocs.io/en/latest/

27 https://wirecloud.readthedocs.io/en/stable/

D3.5 Data Processing Services M27 35 / 82

A Data Platform for the Cognitive Ports of the Future

Data Model. It guarantees to take advantage of NGSI-LD as a mechanism to enhance context data
entities through adding the concept of linked data. The work during the following month will be
focused on improving the provision of REST API interaction with Linked Data through the component,
including the semantic functionalities identified or required.

• Focus on the scalability, extensibility, and modularity of the component.

5.4 FUTURE WORK: ROADMAP

The Semantic Interoperability component brings the essential data models, mechanisms and enablers to
provide interoperability with the current and future data sources of the seaport's environment. In addition,
it has the specific objective of offering a solution compatible with the solutions that the Fiware technical
stack will offer in the coming months in various areas such as digital twins, data spaces or Blockchain.

The open-source nature of the involved technologies leads to a strong interest in maintaining and upgrading
the component constantly. Therefore, the future work seeks to offer the novelties developed to the potential
developers of these open-source communities, as well as update the developed solution to be compatible
with future enablers and tools. For that reason, the future roadmap of the component is focused on the
following main aspects:

• Open-source release of the developed novel components like On Demand Component and support
tools.

• Contributing to the Smart Data Models initiative with the concepts defined in the common DataPorts
data model. The aim is to participate in the periodical meetings and to collaborate actively in the
subject related to Ports.

• Participation in the Data Spaces Business Alliance future activities, which is an initiative promoted in
the scope of the Fiware, Data Spaces, Gaia-X, and BDVA activities. This initiative promotes the
collaboration between organisations and projects sharing their vision on how to materialise an open
standard-based, open source available and CEF-compatible software infrastructure for creation of
data spaces in Europe.

5.5 EXAMPLE OF USE: DEMONSTRATION

The following demonstration scenarios highlight the Semantic Interoperability component main
functionalities, already described in the previous subsections. The sections from Section 5.5.1 to Section
5.5.4 are focused on illustrating the mechanisms, enablers, data models, ontologies and interfaces offered
to facilitate the Common Access and Management of the different Data Sources integrated into the DataPorts
Platform. Section 5.5.5 and Section 5.5.6 cover the main functionalities offered to guarantee the integration
of the component in the DataPorts technological stack. Finally, Section 5.5.7 highlights the functionalities
offered from the point of view of a deployment (together with the data access component) as an autonomous
component focused on offering added value to other end user applications.

5.5.1 Demonstration overview

Figure 24 shows an overview of the sample scenarios provided by the demonstration to explain the
functionalities related with the Semantic Interoperability component. It mainly covers the flow of data and
metadata between the Data Access and Data Semantic Interoperability services to other internal components
or services and applications. More specifically, several data sources with simulated data are connected to the
Semantic Interoperability Component through the corresponding agents, which are managed by the Data
Access Component. This way, the data can be accessed through the Semantic Interoperability Component
API. In addition, a demo application (presented in Section 5.2.7) has been provided to show in a clear and
visual manner the different ways the data can be obtained.

The potential users of the platform for whom this demonstration is intended are the following:

D3.5 Data Processing Services M27 36 / 82

A Data Platform for the Cognitive Ports of the Future

• Data providers and Data Owners: The demonstration shows how the Semantic Interoperability
Component provides access to the data and metadata provided by the agents.

• System Integrators: The demonstration offers to the Agent Developers a clear view of the
interoperability functionalities offered by the platform once an agent is deployed and running.

• DataPorts Platform administrators: The demonstration shows to the platform administrators a clear
view of how to manage and visualise the agents and the data sources.

• DataPorts Platform developers: The demonstration explains how the internal components access to
the Data Sources available through the Semantic Interoperability Component and the functionalities
of the API.

• Data Users: The demonstration offers insights of the advantages of having a common API and Data
Model to make use of the data through new or existing applications.

Figure 24 – Demonstration overview

The demonstration includes the following features:

• Local metadata storage/management and Data Models.

• Access to real-time and historic data.

• Subscription to a data source.

• Internal components integration.

• Use of the data by external applications.

• Reuse of data by existing tools.

The sample data sources and agents used to cover the different scenarios of the demonstration are:

D3.5 Data Processing Services M27 37 / 82

A Data Platform for the Cognitive Ports of the Future

• A generic data source, connected through a generic agent and sending dummy data.

• Port Community System (PCS) data. PCS provides data about port and logistic processes. In the
example, port calls were used as input data. The demonstration includes two different agents for the
PCS data: a publish/subscribe agent, which enables access to the current values (providing the
necessary updates), and an on-demand agent for historical data.

• Weather data sources, connected through their corresponding on demand agents. These agents
make use of the WeatherObserved data model28 from Fiware. In the example, three data sources
were used, which provided data from Valencia, Thessaloniki, and several locations in Greece,
respectively.

5.5.2 Scenario #1: access to a generic data source

The first scenario shows the available data sources, once the corresponding agents have been created
(following the steps described in deliverable D3.1 [2]) and uploaded to the platform. The different data
sources (Figure 20) and agents (Figure 25), which were introduced in the previous Section, appear in the
corresponding screens of the Admin UI ready to be accessed. Next scenarios are going to provide more details
about how the data of these data sources are obtained.

Figure 25 – Available agents (shown in the Data Access Manager UI)

5.5.3 Scenario #2: access to a data source using different types of agents

This scenario shows the different ways to obtain data from a given data source. The selected data source for
this scenario provides a sample of PCS data and is connected to the DataPorts Platform using two different
agents. The following functionalities of the Semantic Interoperability component are demonstrated.

Figure 26 – Notifications (port call status changes) received in the demo application

Firstly, publish/subscribe access is demonstrated. The demo application subscribes to the PCS data and Orion
Context Broker sends notifications when there is a change in any of the parameters of interest; in this
example, the parameter of interest is the status of the port calls. The received notifications are shown in the

28 https://github.com/smart-data-models/dataModel.Weather/tree/master/WeatherObserved

D3.5 Data Processing Services M27 38 / 82

A Data Platform for the Cognitive Ports of the Future

demo application UI (Figure 26) and the details of the existing subscriptions can be shown in the Data Access
Manager UI (Figure 22 and Figure 23).

Next, the access to the last values of the data is shown. In this example, the latest received PCS data, which
is stored in Orion and shows the status of the port, is requested to the Semantic Interoperability component.
The demo application sends a last value request to the On Demand component and shows the result (Figure
27), which in this example represents the status of the port calls.

Figure 27 – Current PCS data (port calls) shown in the demo application

Finally, the access to historical PCS data is demonstrated. The demo application sends a historical data
request to the On Demand component and shows the received data (Figure 28).

Figure 28 – Historical PCS data (port calls) shown in the demo application

In addition, the metadata of the data source (Figure 21) and agents (Figure 29 and Figure 30) can be shown
in the Data Access Manager UI.

D3.5 Data Processing Services M27 39 / 82

A Data Platform for the Cognitive Ports of the Future

Figure 29 – On-demand agent registered for the example data source

Figure 30 – Publish/subscribe agent registered for the example data source

5.5.4 Scenario #3: Access to different data sources that are using the same Data Model

In this example, three different data sources, which provide weather data from Valencia, Thessaloniki, and
several locations in Greece, respectively, are connected to the DataPorts Platform through their
corresponding on-demand agents. These agents make use of the WeatherObserved data model29 from
Fiware to represent the data. Each agent has defined its corresponding methods to access to the raw data,
which depend on the type of data source (more details in deliverable D3.1 [2]). For example, in the sample
scenario, two of them make use of an API (which returns data in a non-standardised JSON format), while
another obtains the data from an Excel file (which contains the data in a non-standardised CSV format). This
process is transparent to the users, they only need to retrieve the data through the Semantic Interoperability
component. Then, the users can know the concrete specification of the data. Figure 31, Figure 32 and Figure
33 show examples of the historical data obtained from the example data sources in this scenario.

Figure 31 – Historical weather data obtained from the example data source of Valencia

29 https://github.com/smart-data-models/dataModel.Weather/tree/master/WeatherObserved

D3.5 Data Processing Services M27 40 / 82

A Data Platform for the Cognitive Ports of the Future

Figure 32 – Combined historical weather data from two of the example data sources (Valencia and
Thessaloniki)

Figure 33 – Historical weather data obtained from an historical database registry of several locations in Greece

5.5.5 Scenario #4: Send information to the Data Abstraction and Virtualization component

The objective of this scenario is to illustrate how the DAV component can make use of the functionalities
offered by the Semantic Interoperability component to retrieve data. Firstly, the list of available data sources
and their corresponding agents can be obtained from the Metadata Registry, as has been shown in Section
5.2.6. Secondly, the DAV component can request the data to the On Demand component (Figure 34) through
the API. The parameter “callback” indicates the URL where the data is going to be sent. Finally, the DAV
component must be listening in the call-back port to receive the information. As an example, Figure 33 shows
in a visual way the data which would be send to the DAV component. Then DAV performs its corresponding
operations (Section 6) on the received data.

D3.5 Data Processing Services M27 41 / 82

A Data Platform for the Cognitive Ports of the Future

Figure 34 – On Demand component API

5.5.6 Scenario #5: Send information to the Analytics Services

The objective of this scenario is to illustrate how the Analytics Services can make use of the Semantic
Interoperability Component to obtain their input data. To retrieve the new near real-time data via
notifications, Analytics services subscribe to the data through the API. Firstly, the list of available data sources
and their corresponding agents can be obtained from the Metadata Registry. Secondly, the Analytics service
needs to define the parameters of the subscription and the endpoint to receive the notifications. Then, a
subscription is available in the platform (it can be checked in the Admin UI) and waiting to send notifications.
When an update in the Data Source is received, the Orion Context Broker sends a notification to the endpoint.
This scenario is similar to Scenario #2 (Section 5.5.3), but in this case a Data Analytics service is who obtains
the data from the Semantic Interoperability Component. It receives the notifications and processes them to
perform its corresponding operations, described in deliverable D3.3 [15].

5.5.7 Scenario #6: Send Information to Dashboards, Services or Applications

In addition to the previous scenarios, the Semantic Interoperability Component API enables the creation of
new applications that make use of the exposed functionality (Section 5.2.3). New applications could be
developed to take advantage of the common access to the data and metadata and can be used in different
premises. However, it is also possible to access the data making use of tools that involve zero programming
effort, such as the mashup application tools, and to use their visualisation and processing widgets to provide
added value services. For example, Fiware Wirecloud30, which is an application mashup framework that
supports NGSI data models, could be deployed on top of the Semantic Interoperability component. This
would allow the creation of custom applications that use the data obtained from the connected data sources
in simple and visual way. Figure 35 shows an instance of Wirecloud connected to the Semantic
Interoperability API; the available widgets and operators are displayed, as well as an example of a widget
obtaining data from a data source.

30 https://wirecloud.readthedocs.io/en/stable/

D3.5 Data Processing Services M27 42 / 82

A Data Platform for the Cognitive Ports of the Future

Figure 35 – Example of Wirecloud marketplace and a widget running using DataPorts data

Similarly, other existing tools that support NGSI, such as Node-RED31, CKAN32, Kibana33, or Apache NiFi34,
could make use of the Semantic Interoperability API to retrieve data from the data sources, thus enabling a
simple way to show the data and develop new services.

31 https://nodered.org/

32 https://fiware-ckan-extensions.readthedocs.io/en/latest/

33 https://www.elastic.co/kibana

34 https://nifi.apache.org/

D3.5 Data Processing Services M27 43 / 82

A Data Platform for the Cognitive Ports of the Future

6 DATA ABSTRACTION AND VIRTUALIZATION COMPONENT

This section covers the implementation status of the “Data Abstraction & Virtualization” component in M27
of the project. It provides an overview of the component as well as the involved technologies. The section
also includes the description of the sub-components which compose the Data Abstraction & Virtualization
(DAV) component, along with their technological aspects and their development status. Finally, Section 6.5
highlights the key functionalities of DAV via a running demonstration.

6.1 OVERVIEW

Data virtualization is a data integration technique that provides access to information via a virtualized service
layer, regardless of the location of the data sources. It allows applications to access data, from a variety of
heterogeneous sources, through a single endpoint, thus providing a unified, abstracted, and encapsulated
view of information for query purposes, while being able to transform and process the data to prepare it for
consumption. A significant challenge in data virtualization is to manage different types of storage systems
(e.g., key-value, document, or relational databases) which all need to be integrated. In addition, data-
intensive applications, that use a virtualized data source, still expect certain quality of service guarantees
from the system, such as performance, availability, etc. The Data Abstraction and Virtualization (DAV)
component attempts to deal with those challenges, also contributing to the data interoperability of the
platform. Furthermore, it focuses on the fulfilment of the project’s requirements that are related to quality
of data. In a nutshell, DAV is responsible for correctly preparing data input from different sources inside the
generic DataPorts architecture, maintaining metadata from all feeds, and finally making available the
"cleaned" & processed datasets to any eventual client. Persistent data streams (that is, data that has already
been collected and stored) are the primary source of load for the DAV.

6.2 TECHNOLOGICAL DESCRIPTION

During the first reporting period of the project, emphasis was put on the design of the component, meaning
to define its features and functionalities, according to the project’s objectives and requirements. To this end,
the internal architecture of DAV as well as its initial implementation were completed at that time and were
documented in the deliverable D3.2 [16]. However, in the second phase of the project, the focus is mostly on
selecting the proper technology to realize the component’s functionalities and to adapt it to the other
components’ needs and characteristics, in order to enable the integration between the different layers of
the DataPorts Platform. Towards that direction, a comparative analysis, concerning various Big Data
processing frameworks was carried out, the conclusions of which are presented hereunder:

Given the project’s requirements and constraints, the frameworks were analysed based on the following
comparison metrics and parameters:

• computational performance in batch processing

• system distribution

• scalability

• compatibility with MongoDB

• compatibility with Kubernetes

• ability to combine information coming from many instances of DAV

• variety of exposed data formats

D3.5 Data Processing Services M27 44 / 82

A Data Platform for the Cognitive Ports of the Future

The frameworks taken under consideration were Apache Spark35, Apache Flink36, Apache Storm37, and
Apache Nifi38. These are all well-known tools, which are widely used in the Big Data industry.

Concerning the data processing tasks of DAV, Apache Spark was chosen (Figure 36), since it meets all the
above conditions. More specifically, it supports many programming languages (Java, Scala, Python, R), is well
documented with a very wide community of users and can produce advanced analytical results. Compared
to the other frameworks, it appears that each one has specific advantages and challenges. For example,
Storm is mostly focused on processing real-time data [17], whilst DAV deals only with historical data.
Regarding batch data processing, Spark and Flink both operate very well, each one outperforming the other
depending on the benchmark (e.g., data type, size, job pattern etc.) [18][19]. However, Spark seems to be
the framework with better scalability and overall faster runtimes [20]. For this reason, and for the richer
analytical library and documentation, Spark was selected instead of Flink.

Figure 36 – Apache Spark cluster for the data processing tasks of DAV

As far as the exposure of the data is concerned, Apache Nifi was chosen (Figure 37). More specifically, this
framework provides a virtual manipulation of data flows through a detailed and user-friendly UI, while its
data flow programming philosophy has been an asset in both testing and production environments. It is
worth noting that via Nifi, it is easy to create HTTP request handlers, which serve as REST API endpoints for
triggering processing jobs. It is fully compatible with MongoDB, which makes the metadata extraction from
DAV’s repository very fast and efficient. It is also capable of transforming the data formats from JSON to
Parquet or CSV etc. and combine other data sources to offer a variety of data to the consumers. Furthermore,
Nifi is able to run in a cluster environment to avoid bottlenecks and reduce traffic, whereas it enables
debugging at every step of the data flow. Moreover, it is very well documented offering many opportunities
and tools. Finally, Apache Nifi is controlled via HTTPS protocols, thus making it safe and secure for production.
Concerning its compatibility with Kubernetes, Apache Nifi is able to operate within a K8s cluster [21], so that
can be integrated with the Virtual Data Repository, the DAV’s data lake (Section 6.2.2).

Figure 37 – Apache Nifi for DAV’s interface

35 https://spark.apache.org/

36 https://flink.apache.org/

37 https://storm.apache.org/

38 https://nifi.apache.org/

D3.5 Data Processing Services M27 45 / 82

A Data Platform for the Cognitive Ports of the Future

The Data Abstraction & Virtualization component consists of three main sub-components, which
communicate and interact, to fulfil DAV’s objectives. The three sub-components, as shown in Figure 38, are:

• The (Pre)Processing and Filtering Software (PaFS)

• The Virtual Data Repository (VDR)

• The Virtual Data Container (VDC)

PaFS achieves the initial pre-processing (including cleaning and filtering) of the incoming datasets. VDR plays
the role of the repository for all the existing datasets that have made their way in DAV, after being pre-
processed by PaFS. It can be seen as a data lake, containing all the pre-processed datasets. VDC is the layer
between DAV and any potential data recipient. It further processes the data, by applying any filtering rules
that are defined by the data consumer per request. Furthermore, upon the dataset request by a recipient, it
transforms the data into the desired format (e.g., Parquet, CSV, etc.). Moreover, it provides useful metadata
for all the pre-processed datasets stored in VDR, such as size, number of rows and variables, timestamp of
last update etc.

Figure 38 – Data Abstraction and Virtualization functionalities and technologies

6.2.1 (Pre)Processing & Filtering Software (PaFS)

Starting with PaFS, it is a sub-component that pre-processes the datasets coming from the on-demand
component of the Semantic Interoperability layer upon request. All kinds of data can be accepted, since PaFS
(and DAV in general) has a generic nature, regarding the data it receives and deals with. The incoming dataset
is fully collected and, as soon as the collection ends (that is, as soon as the full dataset has been retrieved),
PaFS creates a dataframe (a table), containing all the data. The proper column types for each dataset’s

D3.5 Data Processing Services M27 46 / 82

A Data Platform for the Cognitive Ports of the Future

column are examined, based on the dataset’s metadata. If needed, PaFS acts by correcting some columns’
data types. Such a step is highly important, since all later applications need proper column integrity within
the dataset’s frame. Then, the sub-component initiates the cleaning & filtering phase by proceeding to apply
the following generic pre-processing techniques (to the dataset):

• Removal of whitespaces from all string-type cells

• Conversion of empty cells and ‘NULL’ string values to ‘nan’ values in all cells

• Removal of records / dataset rows without datetime values, or with wrong ones

• Conversion of datetime values to UTC format

These four steps were determined after thorough research and study upon the DataPorts Platform’s needs
for proper data cleaning & filtering. This way, future recipients of the cleaned datasets inside (and possibly
outside) the platform can make the most out of their own frameworks, such as the Machine Learning tasks
executed by the “Automatic Model Training Engine” [5] After that, PaFS locates all cells (belonging to any
column) with no or ‘NULL’ value. These cells are filled with the alphanumeric ‘nan’, allowing future data
recipients to easily remove these records (shall they choose to), with the use of simple existing - NaN removal
- commands (available for many programming languages). PaFS’s next move is to correct the datetime
columns, meaning the ones of “timestamp” types. The sub-component locates these columns (if existent in
the dataset) and proceeds to “conform” all data records to the predefined datetime format. This format is
included in the dataset’s metadata. This format is used by PaFS to correct all the other cells. For example,
such a format would be “yyyy-MM-dd*HH:mm:ss:SSS”. If the cells cannot be corrected based on the given
format, or if they are empty, they (together with the dataset row to which they belong to) are removed. After
the proper correction is complete, these timestamp columns are converted to UTC format, based on Valencia,
Spain’s (CET) time zone. To sum up, PaFS achieves the initial (but vital) pre-processing, cleaning and filtering
of every incoming dataset. It pre-processes the dataset by the means of fully collecting it, transforming it into
a Python code – friendly format and taking care of proper column – row structure. It cleans and filters the
dataset by the means of applying specific general actions, generated based on DataPorts Platform’s needs
for proper function of the upper layer components (analytics). A portion of PaFS’ code can be seen in Figure
39:

D3.5 Data Processing Services M27 47 / 82

A Data Platform for the Cognitive Ports of the Future

Figure 39 – PaFS code part of initial filtering & applying of the generic actions

Before finishing, PaFS proceeds to draw a correlation matrix between the columns of each dataset. This new
piece of data is stored along with the existing (cleaned) dataset at the Virtual Data Repository (analysed later
on). Furthermore, PaFS attempts to detect outliers in numerical columns, creating additional columns with
cells that indicate which corresponding column cell is considered as an outlier. For every numerical column
that is subject to outlier detection, one additional column is generated, with values of “yes” or “no”,
indicating whether the corresponding cell is an outlier or not. The detection is implemented using the method
of “three standard deviations from the mean”, as a cut-off radius / threshold. This method can be modified,
based on the user’s & data recipient’s needs. PaFS main code is written in Python39 programming language
and, more specifically, Python Spark (PySpark) job. For the code to run as a Spark job in a Spark environment,
some steps must be completed. Those steps are as follows:

• Make sure that an Apache Spark cluster has been set up on the physical machine(s) that PaFS will run
upon

• Download all the necessary .jar files / libraries (available at DAV’s repository) and put them in the
<user_path>/spark/jars folder

• Repeat the step above in all the nodes / workers of the Spark cluster. This is a useful step, since the
user might need to change roles to their machines inside the cluster, using other masters and workers
at times. Moving the PaFS PySpark job to the master every time, it shall work immediately, since the
.jar files will be present

39 https://www.python.org/

D3.5 Data Processing Services M27 48 / 82

A Data Platform for the Cognitive Ports of the Future

• Submit the PaFS’s .py file as a Spark job to the master

• Check that PaFS is running, by examining its Spark job logs

To sum up, PaFS achieves the Pre-processing, Cleaning and Filtering of every incoming dataset. It pre-
processes the dataset by the means of fully collecting it, transforming it into a Python code – friendly format
and taking care of proper column – row structure. It cleans the dataset by the means of detecting “dirty”
values (such as NaNs, empty fields, outliers, and wrong values). It filters the dataset by the means of
eliminating all the dirty values found, either by replacing them, or by removing them (along with their rows
in the dataset / dataframe).

6.2.2 Virtual Data Repository (VDR)

Moving on to the second main part of DAV, the Virtual Data Repository (VDR), this is the place where all the
pre-processed, cleaned, and filtered datasets, coming from PaFS, are temporary saved. After a dataset has
been passed through all its functions, it then gets stored in VDR (along with its columns’ correlation matrix).
VDR consists of a MongoDB40, carrying modifications and custom parameters, to comply with DAV’s
efficiency standards. Apart from co-operating ideally with the Kubernetes framework, MongoDB is the most
popular document store in 2020, according to DB-Engines41, as already mentioned in the deliverable D2.1
[7]. In the case of DAV, MongoDB was also selected based on its auto-scaling / sharding capabilities, as well
as its allowance of vital modifications / custom configurations by the creator. Since DAV’s main functionality
is data virtualization, MongoDB’s co-existence with Kubernetes (as a container management tool) seems
imperative. As depicted in Figure 38, VDR sub-component lives inside a Kubernetes cluster. Indeed,
Kubernetes is the optimal solution and fits perfectly to the needs of DAV, since it achieves proper load
balancing, whilst offering replication / scaling & scheduling techniques [22]. The version of Kubernetes upon
which DAV is tested, is v1.20.5. The cluster consists of three physical machines (servers), running Ubuntu
20.04.2. There is one main node and two worker ones. For DAV to function, a Kubernetes Cluster must be
set up & running in one (or more) physical machines. Then, it is preferable for DAV to be located inside a
dedicated Kubernetes namespace.

An important note is that the following construction / implementation steps are for a local cluster system,
with physical machines / servers. This means that these steps are not for an NFS server, or any
implementation of this kind:

1. Make sure that Kubernetes points at DAV’s namespace (as always)
2. Create a storageclass.yaml file, defining the information of the storage class that shall be used in the

MongoDB – VDR
3. Define multiple persistent volumes, inside a persistentvolumes.yaml file. For that to work properly,

we must have already created volumes at /mnt/disk/. Created volumes (such as vol1, vol2, vol3 etc.)
inside the disk folder will be referenced through the .yaml file, as persistent volumes available for
use from Mongo – VDR
Note that there is no need to create persistent volume claims (PVCs), since these will be created
automatically by the statefulSet.yaml file later on

4. Create a mongodb “headless” service .yaml file, for Mongo – VDR to function as a service inside the
Kubernetes cluster

The last .yaml file needed is the statefulSet one. This is where the critical details of MongoDB’s nature will be
set, such as the number of replicas available after launch. A statefulSet.yaml example can be seen below,
defining two Mongo replicas and an internal port to 27017:

40 https://www.mongodb.com

41 https://db-engines.com/en/ranking/document+store

D3.5 Data Processing Services M27 49 / 82

A Data Platform for the Cognitive Ports of the Future

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: mongo

spec:

 selector:

 matchLabels:

 app: mongo

 serviceName: "mongo"

 replicas: 2

 template:

 metadata:

 labels:

 app: mongo

 spec:

 terminationGracePeriodSeconds: 10

 containers:

 - name: mongo

 image: mongo

 command:

 - mongod

 - "--bind_ip_all"

 - "--replSet"

 - rs0

 ports:

 - containerPort: 27017

 volumeMounts:

 - name: volume-claim

 mountPath: /data/db

 volumeClaimTemplates:

 - metadata:

 name: volume-claim

 spec:

 storageClassName: managed-storage

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 3Gi

5. Apply all the .yaml files above, by the same order of creation, to the Kubernetes framework (kubectl
create –f YAMLFILENAME)

6. Create a temporary mongo shell as a Kubernetes service, in order to enter the MongoDB created and
configure it properly.

The result is the creation of a modified MongoDB, consisting of more than one replica, making it robust and
immune to system fails, which of course depends on some vital factors, such as the number of replicas and
their distribution inside the cluster. If a MongoDB replica goes down, the other replicas will ensure that VDR
will still function as expected, containing all the data, and eliminating data loss or temporary unavailability.
All Mongo Replicas are viewed as one database. Kubernetes performs load balancing and distributes data
the way it thinks fits best, which means that the end user does not know where exactly (in which node or
replica, for example) the queried response-data are stored.

D3.5 Data Processing Services M27 50 / 82

A Data Platform for the Cognitive Ports of the Future

6.2.3 Virtual Data Container (VDC)

Moving on to the third and final sub-component of DAV, the Virtual Data Container (VDC), this is the agent
through which communication with data recipients is achieved, for data (stored in VDR) to be made available.
Ιt is a generic (sub) component, the role of which is to further process and filter the data, by applying specific
filtering rules defined by the data consumers via HTTP POST requests. The scope of those rules is twofold: i)
on one hand to filter the datasets and thus to serve only the specific data pond that a specific user is
interested in and ii) on the other hand to detect and remove wrong inputs (from areas / columns where those
inputs are not acceptable e.g., outdoor temperatures at minus 100 degrees Celsius), which are most probably
caused by sensors malfunction. Through that POST request, the data consumer also defines the format in
which he/she wants to receive the data (data transformation). Furthermore, VDC is responsible for exposing
useful metadata (size, number of rows and variables, timestamp of last update etc.) for each one dataset
that is stored in VDR. Those metadata are available via a RESTful API.

Interface

As already mentioned in Section 6.2, Apache Nifi is used to create the data flows, for DAV to be able to expose
the cleaned and processed data to the data consumers. To this end, Figure 40 presents the flow developed
to implement the VDC Rules System (data processing and filtering based on user-defined rules), which is
analysed in the following subsection. As can be seen in that figure, the actual processing, filtering, and
transformation of the data is performed by Spark. The following bullets briefly describe the functionality that
is executed by each one part of the depicted flow:

• VDC API -> The HTTP POST endpoint for the VDC API

• PARSE JSON REQUEST DATA AND GENERATE SPARK JOB SPECIFICATIONS -> Parse the input data

(rules file, desired output data format, etc.) and create the corresponding Spark Job request

• INVOKE SPARK JOB AND SEND ACK -> Send the request to the Spark Listener and also send an

acknowledgement message to the user who made the request

• HANDLING ERRORS -> Generate an HTTP response in case something goes wrong during the

processing of the input data (e.g., errors in the structure of the rules file)

Figure 40 – VDC flow to trigger data processing, filtering and transformation jobs upon request

Correspondingly, Figure 41 shows the metadata extraction flow. The different parts of the flow implement
the following functionalities:

D3.5 Data Processing Services M27 51 / 82

A Data Platform for the Cognitive Ports of the Future

• METADATA API LISTENER -> The HTTP GET endpoint for the datasets' metadata API

• COMMUNICATING WITH MongoDB -> Run the appropriate MongoDB queries for collecting the

datasets' statistics

• PARSING DATASETS METADATA AND SENDING AS JSON RESPONSE -> Parse the collected metadata

into the format of the API specification and send an HTTP response

• HANDLING ERRORS -> Generate an HTTP response in case something goes wrong during the

execution (runtime errors such as collection or DB not found)

Figure 41 – VDC flow for metadata extraction upon request

VDC Rules System

This subsection provides the structure of the aforementioned filtering rules, written in JSON format, as well
as some indicative examples, related to the Valencia PCS traffic dataset.

The rule structure is very simple. The three core elements of each rule are a "subject column", an "operator"
and the "object". The expected rules list format is a JSON Array, which shall include rules (JSON Objects),
containing those string values. VDC parses this list and applies the rules to the requested dataset.

This is the architecture of the incoming rules JSON file:

• A JSON Object, containing

• A string field with the dataset’s name, and another one with the dataset’s id

• A JSON array containing the rules as JSON Objects
▪ Each JSON Object (rule) in the array shall contain a string field with its name, and another

JSON Object with the rule itself

• Each rule Object shall include the “subject_column”, “operator” and “object” fields

• In case the “operator” is a disjunction, meaning the “or” expression, then the “object”
field shall be a JSON Array, containing two (or more) objects with single string
“operator” and “object” fields

D3.5 Data Processing Services M27 52 / 82

A Data Platform for the Cognitive Ports of the Future

Figure 42 – VDC rules system accepted operators

Figure 42 indicates all the accepted operators that can be used by the rules’ author (data scientist, application
developer, end-user etc.). Any other operator is not recognized by the VDC. Therefore, any rule object
containing unknown operators is discarded. In addition, there are two main principles, on which the rules
system is based upon. These principles enable a user to better understand the rules’ nature:

• A rule’s main goal is to apply filters to one subject (column) at a time, not combining subjects
(columns). If more than one column is concerned as subjects in one rule, then this step could be
regarded more as “pre-processing” and less as “filtering”. Moreover, changing the content of specific
rows / values, or removing rows with specific value type, is also a step at lower level than what the
rules’ system suggest

• DAV is, from its nature, a generic framework, meaning that it can be used for all kinds of datasets.
Making a rule more complex than that of the standard “subject - operator - object” architecture,
simply violates DAV’s generic nature. It is relatively easy and simple to implement basic pre-
processing steps for selected datasets; it usually does not take more than - a couple of - lines of code.
However, these kinds of pre-processing steps would not be applied to other datasets, assuming that
any kind of dataset can enter DAV. Therefore, the data scientists would have to go to a conditional
solution, such as “if the incoming dataset is X, then apply these selected lines of code”. This is a very
easy solution, but ruins DAV’s fundamental generic nature

An indicative example of the rules’ system usability is derived from the specific filtering actions that were
requested from the Automatic Model Training Engine to be applied to the Valencia PCS traffic dataset. Those
actions are presented in Figure 43:

Figure 43 – Filtering actions requested by AMTE for the Valencia PCS traffic dataset

Regarding the first two actions for the “Arrival” variable (column), these should be implemented as a rule
with disjunction, meaning “or”. The JSON object of this rule (containing the two “Arrival” column actions)
should be written according to the following example:

D3.5 Data Processing Services M27 53 / 82

A Data Platform for the Cognitive Ports of the Future

Figure 44 – Filtering rules JSON file example #1

Regarding the third action, related to the “Status” variable (column), the rule’s author should use the “not
equal to” operator, meaning “!=“. The JSON object of this rule should be written according to the following
example:

Figure 45 – Filtering rules JSON file example #2

All three remaining actions are related to the “equal to” operator, meaning “==“. Therefore, the proper way
to write down the corresponding rules JSON file should be (taking the “Regular line” column as an example):

Figure 46 – Filtering rules JSON file example #3

In conclusion, the goal is to assist any potential DataPorts user to define a JSON Array of a dataset’s actions
/ rules with ease. For that reason, its structure is kept simple, and the principles behind the rules’ architecture
are sane. Consequently, those filtering rules can be specified not only by data scientists, but also by users
with limited or no technical background within a ports ecosystem, who are interested in exploiting DataPorts
cognitive services. The rules system can be applied to all kinds of datasets, based on the needs for cleaning
& filtering.

The VDC Rules System is implemented in Python programming language with the usage of Spark framework.
Part of the corresponding code is depicted in Figure 47:

D3.5 Data Processing Services M27 54 / 82

A Data Platform for the Cognitive Ports of the Future

Figure 47 – VDC code part of applying the filtering rules

6.3 DEVELOPMENT STATUS (M27)

This section provides the features (sorted by subcomponent) of DAV that are currently implemented (please
refer to Figure 38).

• Pre-processing & Filtering Software (PaFS)

• Main functionalities completed

• Pre-processing
• Cleaning
• Filtering
• Correlation
• Outliers detection

• Requirements that are currently addressed (partially or totally) by PaFS

• R3.19: The Data Abstraction and Virtualization component must be data-source
independent

• R3.41: The DataPorts Platform should have (efficient) provisions for checking data quality
(e.g., to detect concept drift, missing data, inconsistent data etc.)

• R3.42: The DataPorts Platform should deliver cleansed, integrated etc. data to the
analytics services

• R3.44: Data correlation. The data from different sources should be correlated (virtual
object) or in the same process

• R3.46: Data quality. Before correlate data from different sources, quality should be
checked to guarantee the correct interpretation

• Virtual Data Repository (VDR)

• Infrastructure implemented (Data Lake)

• MongoDB Replicas up & running in a Kubernetes cluster

• Requirements and functionalities that are currently fulfilled (partially or totally) by VDR

• R3.19: The Data Abstraction and Virtualization component must be data-source
independent

• R3.23: The components of the DataPorts Platform could be virtualized, in order to ease its
deployment and portability

• F2.2: The DataPorts Platform sets a data driven ecosystem ready for a comprehensive
exploitation of data, and virtual data repositories

• F3.10: The DataPorts Platform provides declarative, distributed data aggregation

D3.5 Data Processing Services M27 55 / 82

A Data Platform for the Cognitive Ports of the Future

• Virtual Data Container (VDC)

• Main functionalities completed

• An abstraction layer between the data consumers (e.g., data-intensive applications) and
the VDR

• Further processing and filtering based on rules upon request
• Returns a portion of the data (data pond) upon request
• Able to transform the data to serve it in the right format (e.g., from JSON to Parquet, CSV,

etc.)
• Provide metadata for all the pre-processed datasets stored in VDR

• Requirements and functionalities that are currently fulfilled (partially or totally) by VDC

• R3.18: The Data Abstraction and Virtualization component must have an open API for big
vendors as well as new providers to be able to publish their services and components

• F3.15: The DataPorts Platform provides smart API for cognitive services

6.4 FUTURE WORK: ROADMAP

Towards the finalization of the project, emphasis will be put on making all the necessary adjustments related
to the integration of Data Abstraction & Virtualization component into the DataPorts Platform, from the use
cases perspective. For example, additional pre-processing actions or new filtering rules files might need to
be created, depending on the available datasets as well as the end-users’ requirements. Furthermore, effort
will be spent on how to package the component, so that can be easily deployed in a common infrastructure
inside the ports premises if needed. A lightweight version of DAV might be developed for that purpose.
Regarding the component itself, the goal is to further improve VDR, to become a fully dynamic system for
storing and managing Big Data, which could automatically scale its resources according to the network load,
aiming at optimizing resource utilization and decreasing response times for applications in need of high
availability. DAV component will be released as open-source software under GNU General Public License
version 3.

6.5 EXAMPLE OF USE: DEMONSTRATION

6.5.1 Introduction

Data Abstraction & Virtualization component is considered as an internal framework of the DataPorts
Platform, thus users interact with VDC (DAV’s third sub-component) mainly via exposed RESTful APIs. The
following running demonstrations highlight the DAV’s main functionalities, already described in the previous
subsections. The PCS traffic dataset from Valencia port is used for demo purposes. This dataset is free to
use and can be accessed here:
https://www.valenciaportpcs.net/portcalls/search/historic

6.5.2 Pre-processing, Cleaning and Filtering

Figure 48 depicts an example of those data coming from the Semantic Interoperability layer in JSON format,
while Figure 49 lists the datatype for each one attribute. These metadata are necessary for PaFS (DAV’s first
sub-component) to work properly, as explained in Section 6.2.1. PaFS is then responsible for performing all
the generic pre-processing techniques that are described in Section 6.2.1, resulting in the pre-processed and
cleaned data, presented in Figure 50:

D3.5 Data Processing Services M27 56 / 82

A Data Platform for the Cognitive Ports of the Future

Figure 48 – Valencia PCS traffic raw data example

Figure 49 – Valencia PCS traffic datatypes (Spark schema)

Figure 50 – Valencia PCS traffic pre-processed and cleaned data example

As shown in Figure 50:

• whitespaces from all string-type cells have been removed

• ‘NULL’ string values have been converted to ‘nan’

• CET timestamps have been converted to UTC

D3.5 Data Processing Services M27 57 / 82

A Data Platform for the Cognitive Ports of the Future

6.5.3 Request VDC to extract metadata of a dataset stored in VDR

Given that the above pre-processed and cleaned dataset has been stored properly in VDR, a potential data
consumer is then able to extract its metadata through an HTTP GET request, as shown in Figure 51. The id of
the dataset is passed to the VDC as a query parameter. Postman 42tool is used to send that request:

Figure 51 – VDC metadata extraction example

6.5.4 Request VDC to retrieve a data pond (via filtering rules) in a specific format

Given that the same pre-processed and cleaned dataset has been stored properly in VDR, a potential data
consumer is then able to retrieve data ponds of that dataset through an HTTP POST request. For example, a
user might want to obtain only the PCS traffic data that refer to specific time intervals (e.g., during rush hours
of a specific day), and also that data pond to be structured in CSV format. Figure 52 depicts the corresponding
body of the POST request, while Figure 53 presents the output filtered data. Again, Postman is used to send
the request.

42 https://www.postman.com/

D3.5 Data Processing Services M27 58 / 82

A Data Platform for the Cognitive Ports of the Future

Figure 52 – VDC request body example

Figure 53 – VDC output data pond example

D3.5 Data Processing Services M27 59 / 82

A Data Platform for the Cognitive Ports of the Future

7 DATA PROCESSING SERVICES COMMON EXAMPLE OF USE

The Data Processing Services are the components that take the role of the functional connection between
the heterogeneous data sources available with the data analytics services and cognitive applications of the
platform. On the one hand, the project is accessing a considerable number of heterogeneous data sources
via the Data Access Component (explained in D3.1 [2]). On the other hand, DataPorts is producing several
Data Analytics Services and Cognitive Applications (explained in D3.6 [5]). The whole DataPorts Platforms is
going to be validated with the scenarios and data of pilot use cases (covered by WP5). However, to plan an
organized and effective integration process some scenarios are offered in this section. They are defined
taking as starting point the access to several data sources selected with the aim to describe and verify the
feasibility and operation of these DataPorts Platform components working together.

In addition, each component of the Data Processing Services has been presented independently in Sections
5 and 6. In addition, the improvement of the Data Access component since M18 of the project has been
described in Section 4. For each of those components, its functionalities, technical decisions taken for its
implementation and a description of its operation have been explained. However, as Section 3 has stated,
the integration will be one of the main challenges of the release of the DataPorts platform. The integration
has taken place following the general platform integration plan, which ends in the M30. In this section, the
status of the platform (M27) is presented through a prototype that has been developed to review and analyse
the integration of the data processing services and relevant analytics services.

Finally, it is crucial to highlight that during M30 the final status of the DataPorts Platform Implementation
and Integration will be provided in the platform portal and Git repositories (listed in Section 8). This final
phase includes all the activities aimed at the implementation of the data platform, considering all the
technical aspects including those related to data governance. This phase is carried out through the ending of
WP2, WP3 and WP4 and the results of the D3.7 -Permissioned Blockchain network [4], D4.4 –Blockchain-
based data governance rules and D4.6 -Secure environment for data sharing and trading.

7.1 DEMONSTRATION OVERVIEW

Currently, the data platform implementation and services are providing the blocks included in the
architecture of the data platform, covering all the aspects of the data value chain, with a special focus on
data integration and aggregation. For that reason, this demo is devoted to explaining the interactions of the
core functional components of the DataPorts platform. Mainly, it is focused on explaining the technical tools
for the acquisition, interoperation, processing, and analysis of the data coming from heterogeneous data
sources available in the seaports’ ecosystem. As Figure 54 shows, the common demonstration is structured
in three main blocks, firstly the Data Access Component (explained in deliverable D3.1 [2] and updated in this
deliverable), secondly, the Data Processing Services (explained in this deliverable) and, thirdly, the Data
Analytics Services and Cognitive Applications (explained in deliverable D3.6 [5]).

D3.5 Data Processing Services M27 60 / 82

A Data Platform for the Cognitive Ports of the Future

Figure 54 – Common demonstration overview

7.2 DATA SOURCES

The first aim of the prototype is acquiring, processing, and registering data and metadata coming from the
different data sources and digital infrastructures existing in the digital seaports. In this demonstration, two
different data sources are integrated into the demonstration:

• PCS Traffic: Port Community System (PCS) is an electronic platform used for exchanging port and
logistic data among the companies involved in the transport operation. It is provided by ValenciaPort.
In the common demonstration, this data source provides two different types of data, the real time
and historical vessel port call details43 and the historical import and export trade data.

• AEAT customs: This data source offers aggregated statistics of the external trade provided by the
Spanish Tax Agency (AEAT customs)44.

The demonstration illustrates the mechanisms for common Access and management of these data sources
integrated into the DataPorts Platform.

7.3 DATA ACCESS COMPONENT

An agent [2] is a piece of code focusing on the access to the available data source and performing the
transformation into the common data model in order to allow a common understanding of the data. The
Data Access component is basically a web-based tool to manage and run agents that integrates data into the
DataPorts platform. The Data Access component offers different actions that can be performed through its
User Interface. The main actions performed by this component are the following:

• Creating an agent

• Running an agent

43 https://www.valenciaportpcs.net/portcalls/search/historic

44 https://sede.agenciatributaria.gob.es/Sede/en_gb/estadisticas/estadisticas-comercio-exterior.html

D3.5 Data Processing Services M27 61 / 82

A Data Platform for the Cognitive Ports of the Future

• Management of the data sources.
• Management of the data sources connection information and logs.

Figure 55 – Position of the Data Access Component in the demonstration

Three agents have been developed and managed through the Data Access component to access the
corresponding data sources. Two of these agents correspond to the PCS Traffic data source, one of them is
publish/subscribe type and the other one is on-demand type. In addition, an on-demand agent has been
developed for the AEAT customs data source.

As Figure 55 shows, the data sources will be finally consumed by the Automatic Model Training Engine. The
agents involved in that information flow are provided in Table 1:

Data Source Agent Description of Agent role

PCS Traffic On-demand The agent accesses the PCS Traffic data source (for all the years
indicated in the agent), performs the translation of the information into
the common data model defined in the GIT repository and submits the
information to the Data Abstraction and Virtualization Component. The
information is sent divided into blocks of 100 entities and is
reassembled by Fiware Cygnus.

AEAT customs On-demand The agent accesses the AEAT customs data source (for all the years
indicated in the agent), performs the translation of the information into
the common data model defined in the GIT repository and submits the
information to the Data Abstraction and Virtualization Component. The
information is sent divided into blocks of 100 entities and is
reassembled by Fiware Cygnus.

PCS Traffic Publish/Subscribe The agent accesses the PCS Traffic data source (as planned when
running the agent), performs the translation of the information into the
common data model defined in the GIT repository and submits it to the
Semantic Interoperability Component.

 Table 1 – Data sources consumed by the Automatic Model Training Engine and their corresponding agents

D3.5 Data Processing Services M27 62 / 82

A Data Platform for the Cognitive Ports of the Future

In addition, Figure 55 also shows that the data Sources will be finally consumed by Process-Based Analytics.
The agents involved in that information flow are the following (Table 2):

Data Source Agent Description of Agent role

PCS Traffic On-demand The agent accesses the PCS Traffic data source (for all the years
indicated in the agent), performs the translation of the information into
the common data model defined in the GIT repository and submits the
information to the Data Abstraction and Virtualization Component. The
information is sent divided into blocks of 100 entities and is
reassembled by Fiware Cygnus.

PCS Traffic Publish/Subscribe The agent accesses the PCS Traffic data source (as planned when
running the agent), performs the translation of the information into the
common data model defined in the GIT repository and submits it to the
Semantic Interoperability Component.

 Table 2 – Data sources consumed by the Process-Based Analytics component and their corresponding agents

It is important to clarify that these two agents are the same as those referred to in Table 1.

7.4 SEMANTIC INTEROPERABILITY

The Semantic Interoperability component (SIC) provides a common API and data model to access the
available data and metadata. The main functionalities offered by this component are:

• A common data model for the available data sources.

• Show the metadata of the available data sources and agents.

• Access to real-time and historical data available.

• Subscription to an available data source.

Figure 56 – Position of the Semantic Interoperability Component in the demonstration

Following the information flow related to the data Sources that will be finally consumed by the Automatic
Model Training Engine, the role of the Semantic Interoperability component is the following:

D3.5 Data Processing Services M27 63 / 82

A Data Platform for the Cognitive Ports of the Future

Data Source Agent Description of SIC role

PCS Traffic On-demand • DAV asks the SIC: An on-demand historical data request is sent to the
On Demand subcomponent of SIC asking for the PCS Traffic historical
information. This request in addition offers an endpoint where the
on-demand PCS Traffic data will be received.

• SIC asks the DAC: The On Demand subcomponent translates the
query and asks the Data Access Manager to execute the PCS Traffic
On-demand agent to provide the data expected.

• DAC responds to the DAV: The PCS Traffic On-demand agent provides
the data in the common format in the endpoint provided in the
request.

AEAT customs On-demand • DAV asks the SIC: An on-demand historical data request is sent to the
On Demand subcomponent of SIC asking for AEAT customs historical
information. This request in addition offers an endpoint where the
on-demand AEAT customs data will be received.

• SIC asks the DAC: The On-Demand subcomponent translates the
query and asks the Data Access Manager to execute the AEAT
customs On-demand agent to provide the data expected.

• DAC responds to the DAV: The AEAT customs On-demand agents
provide the data in the common format in the endpoint provided in
the request.

PCS Traffic Publish/Subs
cribe

• AMTE subscribes to the PCS Traffic data source of SIC to receive
incoming notifications. AMTE provides an endpoint to be notified.

• AMTE receives a notification from the SIC in the endpoint provided
when new PCS Traffic data is available and has been translated by the
Publish/Subscribe PCS Traffic agent.

Table 3 – Role of the Semantic Interoperability Component in the access to the Data Sources consumed by the
Automatic Model Training Engine

In addition, the data Sources that will be finally consumed by the Process-Based Analytics (PBA), the role of
the Semantic Interoperability component is the following:

Data Source Agent Description of SIC role

PCS Traffic On-demand • DAV asks the SIC: An on-demand historical data request is sent to the
On Demand subcomponent of SIC asking for the PCS Traffic historical
information. This request in addition offers an endpoint where the
on-demand PCS Traffic data will be received.

• SIC asks the DAC: The On Demand subcomponent translates the
query and asks the Data Access Manager to execute the PCS Traffic
On-demand agent to provide the data expected.

• DAC responds to the DAV: The PCS Traffic On-demand agent provides
the data in the common format in the endpoint provided in the
request.

PCS Traffic Publish/Subs
cribe

• PBA subscribes to the PCS Traffic source of SIC to receive incoming
notifications. PBA provides an endpoint to be notified.

• PBA receives a notification from the SIC in the endpoint provided
when new PCS Traffic data is available and has been translated by the
Publish/Subscribe PCS Traffic agent.

Table 4 – Role of the Semantic Interoperability Component in the access to the Data Sources consumed by the
Process-Based Analytics component

D3.5 Data Processing Services M27 64 / 82

A Data Platform for the Cognitive Ports of the Future

7.5 DATA ABSTRACTION AND VIRTUALIZATION

The Data Abstraction and Virtualization component (DAV) offers different processing and filtering techniques
that are applied to the datasets obtained from a historical data request to the Semantic Interoperability
Component. The aim of DAV is to provide processed and cleaned data ponds (by applying specific filtering
rules) to the Data Analytics Services and Cognitive Applications layer.

Figure 57 – Position of the DAV component in the demonstration

More specifically, the steps followed by the component are as follows:

1. Data Analytics Services and Cognitive Applications modules ask for a specific dataset (id), in specific
format (for example Parquet) and with specific filtering rules.

2. DAV checks if this dataset exists in the Virtual Data Repository (VDR), which is the DAV’s temporary
data lake.

3. If the dataset exists, then DAV applies those filtering rules to the existing dataset and forwards the
result (data pond) to Data Analytics Services and Cognitive Applications layer in the requested format
(for example Parquet)

4. If the dataset does not exist, DAV asks SIC’s on-demand component for this specific dataset (id).
5. SIC’s on-demand component fetches the data and notifies DAV. Then step #3 is executed.

To all the datasets obtained by the SIC’s on-demand component, the following pre-processing techniques are
applied by DAV:

• Removal of whitespaces from all string-type cells

• Conversion of empty cells and ‘NULL’ string values to ‘nan’ values in all cells

• Removal of records / dataset rows without datetime values, or with wrong ones

• Conversion of datetime values to UTC format

Given that a dataset has been properly pre-processed and cleaned and is temporary stored in VDR, DAV can
provide its metadata via a RESTful API.

The specific filtering rules applied to the (pre-processed and cleaned) datasets used in the demonstration are
the following:

• PCS Traffic: rules for this dataset are depicted in Figure 43.

D3.5 Data Processing Services M27 65 / 82

A Data Platform for the Cognitive Ports of the Future

• AEAT:

Figure 58 – Rules for the AEAT customs dataset

7.6 AUTOMATIC MODEL TRAINING ENGINE

The Automatic Model Training Engine (AMTE) is a technical solution to create Cognitive Services for Ports’
business KPIs. From a set of available datasets, this service provides a Training Web Interface (front-end) to
automatically train the best machine learning model to answer a specific port KPI. Internally, the component
implements a set of predefined training pipelines, using state-of-the-art ML algorithms for domains of
regression, forecasting and classification, such as time series forecasting and values imputation. The front-
end acts as the interaction bridge between a potential end-user and the model's training engine. The Web
Interface also visually shows all the full potential of the component and summarizes the work done at all
levels. The main utilities of the front-end are the following:

• Creating a new cognitive service

• Managing a trained cognitive service

• Exploring the machine learning models associated with a trained cognitive service

• Analysing and interacting with the outcome of a trained cognitive service

The historical data needed to train the machine learning models is downloaded by the Data Access
component. The metadata will be provided by DAV to AMTE, so the information can be shown in the Web
Interface. Then, the historical data will be properly pre-processed (structured, cleaned, formatted) and
provided in parquet file by the DAV component. Finally, real-time data will be provided by the Semantic
Interoperability component, also properly pre-processed, so the trained model can make new predictions.

 Figure 59 – Position of the Automatic Model Training Engine in the demonstration

D3.5 Data Processing Services M27 66 / 82

A Data Platform for the Cognitive Ports of the Future

Regarding the data sources used in the common demo, the data processing services will offer a common way
to access the input data to the Automatic Model Training Engine, so it can be utilized to create new Cognitive
Services:

• Historical PCS Traffic datasets cleaned and processed: The specific cognitive service that would be
trained is the one called “Vessel Time of Departure Estimator”, which estimates the date and time of
departure of an arriving vessel, based on the port/terminal/regular line associated to it. Once the
arrival time is indicated, the ETD will be calculated.

• Notification of new PCS Traffic information via the publish/subscribe mechanism: Ideally, once
trained with historical data, the service will be able to make new predictions over new incoming data
coming from the Semantic Interoperability component. Historical AEAT datasets cleaned and
processed: The Cognitive Service named “Customs Trade Volume” would be trained. This Cognitive
Service performs an estimation of the volume of a certain type of good (in tons) from/to a specific
district in a certain time horizon in months, selected by the end-user throughout the Training Web
Interface. Hence, the expected trading forecast might be analysed by the user in order to make more
accurate business decisions.

7.7 PROCESS-BASED ANALYTICS

The Process-Based Analytics component analyses business processes (BP) by using both historic and real-
time data available inside the DataPorts platform. The goal of this component is to provide its predictive
results to cognitive applications, which inform the end-users about the predictions. Internally, the Process-
Based Analytics component uses the available datasets in the platform to train a state-of-the-art Machine
Learning (ML) model that provides high-accuracy predictions about the outcomes of currently running
business process, a Reinforcement learning agent that provides reliability score, and the explanations model
that explains for the predictions of the ML model. Specifically, the ML model used in this component is an
Ensemble of LSTM models, which, based on the use case and the BP needs, provides predictions in the form
of regression or classification. The RL model used is a proximal policy optimization (PPO) algorithm that uses
a neural network to directly represent a policy function. The explanation method used is Loreley, which
generates counterfactual explanations to offer for explainability and actionability, i.e., the user is provided
with an example of how to take action by changing the input given to the ML model in order to achieve the
desired outcome.

The results of the Process-Based Analytics component, namely the prediction, the reliability score and the
explanation will be shown to the end-user via a user interface. The user interface allows the end-user to
interact with the component in the following way:

• Request and receive business process metadata

• Request and receive predictions and explanations for historical business process instances

• Subscribe to a specific business process or business process instance to receive real-time predictions
and explanations when available.

D3.5 Data Processing Services M27 67 / 82

A Data Platform for the Cognitive Ports of the Future

Figure 60 – Position of the Process-Based Analytics component in the demonstration

The Process-Based Analytics component receives historical data from the Data Abstraction & Virtualization
component and uses this data for training its sub-components. The historical data provided by the DAV
component will be properly pre-processed (structured, cleaned, formatted) and provided in .csv file format.

The Process-Based Analytics component receives real-time data from the Semantic Interoperability
component. The real-time data received should also be pre-processed and provided in the same format as
specified for the historical data. Real-time data is then used by the Process-Based Analytics component to
make real-time predictions.

Regarding the data sources used in the common demo, the data processing services offer Process-Based
Analytics a common way to access the input data that will be analyzed by the models:

• Historical PCS Traffic datasets cleaned and processed: The specific cognitive service that would be
trained is the outcome prediction service. This service uses historical and current information of the
vessels in the port to predict if a vessel will leave the port in the estimated time or there will be a
delay. Besides the prediction the service will also calculate a reliability score for the specific
prediction. In the case of a predicted delay, an explanation will be generated to allow the end-user
to understand the reason for the delay and how to proactively adapt.

• Notification of new PCS Traffic information via the publish/subscribe mechanism: Once trained with
historical data, the outcome prediction service will be able to generate predictions and explanations
about real-time running processes whose data will be provided by the Semantic Interoperability
component. The outcome prediction model will provide the results in the same way as described for
the historical data.

D3.5 Data Processing Services M27 68 / 82

A Data Platform for the Cognitive Ports of the Future

8 RELEASE SUMMARY

Table 5 shows the release information summary for the Semantic Interoperability Component and its
subcomponents, including subcomponent name, source code and dependencies. Similarly, Table 6 shows the
release information summary of the DAV component and its subcomponents.

Component Subcomponent Release
Information

Details and Links

Semantic
Interoperability
Component

Orion Context

Broker

Version 1.0.1

Source Code https://github.com/FIWARE/context.Orion-LD

Documentation
https://fiware-
academy.readthedocs.io/en/latest/core/orion-
ld/index.html

Docker Image https://hub.docker.com/r/fiware/orion-ld/

Dependencies Mongo (service deployed with the docker-
compose)

On Demand

module

Version 1.0.2

Source Code
https://egitlab.iti.es/dataports/data_processing/
ondemand

Documentation
https://platform.dataports-
project.eu/docs/semantic/

Docker Image -

Dependencies
Orion Context Broker, Data Access Component
(services deployed with docker-compose)

Data Model

Version 1.02

Source Code
https://egitlab.iti.es/dataports/data_processing/
datamodel

Documentation
https://egitlab.iti.es/dataports/data_processing/
datamodel

Docker Image -

Dependencies -

Demonstration
tool

Version 1.0.2

Source Code
https://egitlab.iti.es/dataports/data_processing/
demonstration_tool

Documentation -

Docker Image -

Dependencies Orion Context Broker, On Demand Component

Table 5 – Summary table of Semantic Interoperability Component release information

https://fiware-academy.readthedocs.io/en/latest/core/orion-ld/index.html
https://fiware-academy.readthedocs.io/en/latest/core/orion-ld/index.html
https://fiware-academy.readthedocs.io/en/latest/core/orion-ld/index.html

D3.5 Data Processing Services M27 69 / 82

A Data Platform for the Cognitive Ports of the Future

Component Subcomponent Release
Information

Details and Links

Data
Abstraction and
Virtualization
Component

PaFS

Version 1.0.2

Source Code

https://egitlab.iti.es/dataports/data_processing/
data-abstraction-virtualization_dav/-
/tree/main/PreProcessing%20%26%20Filtering%
20Software%20(PaFS)

Documentatio
n

https://platform.dataports-project.eu/docs/dav/

Docker Image N/A

Dependencies
Apache Spark cluster, MongoDB, On Demand
Component, VDR

VDR

Version 1.0.2

Source Code

https://egitlab.iti.es/dataports/data_processing/
data-abstraction-virtualization_dav/-
/tree/main/Virtual%20Data%20Repository%20(V
DR)

Documentatio
n

https://platform.dataports-project.eu/docs/dav/

Docker Image N/A

Dependencies Kubernetes, MongoDB

VDC

Version 1.0.2

Source Code

https://egitlab.iti.es/dataports/data_processing/
data-abstraction-virtualization_dav/-
/tree/main/Virtual%20Data%20Container%20(VD
C)

Documentatio
n

https://platform.dataports-project.eu/docs/dav/

Docker Image N/A

Dependencies Apache Nifi, Apache Spark cluster, MongoDB, VDR

Table 6 – Summary table of Data Abstraction and Virtualization Component release information

D3.5 Data Processing Services M27 70 / 82

A Data Platform for the Cognitive Ports of the Future

9 CONCLUSIONS

This deliverable offers the final version of the Data Processing Services of the DataPorts platform. These
building blocks offer the key functionalities to guarantee that the rest of the platform components have
common, homogeneous, and processed access to the data sources available on the platform. The deliverable
is mainly focused on the technical description and a complete release summary of each component of the
Data Processing Services. To provide the software described in this deliverable, a code repository and a
technical documentation repository have been deployed in the early stages of the project.

In more detail, this deliverable describes the implementation of the Data Processing Services of the DataPorts
Platform, which are composed by the Semantic Interoperability Component and the Data Abstraction and
Virtualization component. In addition, the improvements included in the new version of the Data Access
component are also described in this document.

The work done on the Data Access component from M18 until M27 has been focused on the improvement
of the management of the agents and the integration of the on-demand agents with the Data Abstraction
and Virtualization component, as well as the provision of new agent templates to facilitate the integration of
the platform with the pilots.

The Semantic Interoperability Component provides a common API to access the data from all the connected
data sources, following a common syntax and data model. The complete version of this component is now
available. This component provides the following benefits:

• Interoperability: Allows the connection of heterogeneous Data Sources. Offering a System of systems
and Common Data Models.

• Ease of use and deploy: Makes the access to the available data and metadata simpler. The
components can be deployed easily in a PC, Server, Cloud Infrastructure or in a Raspberry Pi.

• Modular, Scalable and Extensible solution adapted to the user needs: it could be extended with
added value tools, and it is possible to scale the components on demand.

• Less development effort: Reduces the effort in creating added value applications relying in the data
sources available in the platform.

• Fully compatible with the Fiware Ecosystem and common Open-Source Software: Joint adoption and
contribution to standards. Use of common components and shared Open-Source code.

This component will be updated and extended in the following months to provide a complete integration
with the Identity Manager and Blockchain, and to support Linked Data. Also, additional extensions might be
included if new requirements from the pilots are identified.

Regarding the Data Model, a complete version has been defined, which will be used in the agents developed
to integrate the platform in the different use cases (WP5) and will be updated until M30 following the
feedback received from the pilots.

The Data Abstraction and Virtualization (DAV) component is responsible for the proper pre-processing,
cleaning, and filtering of any incoming datasets, storing them to a secure and scalable data repository (data
lake), and then making them available as data ponds to any potential recipients. Data ponds are created by
applying specific filtering rules, defined by the users upon request. DAV also transforms and serves the data
in a format selected by the user, such as Parquet or CSV. The three sub-components that perform the
complete process are 1) the (Pre)Processing and Filtering Software, where the initial pre-processing, cleaning,
and filtering of the incoming datasets takes place, 2) the Virtual Data Repository, as the main data lake of
DAV, and 3) the Virtual Data Container, through which the distribution of specific data ponds to potential
data recipients is achieved.

This component has been updated and extended to guarantee the integration with the Semantic
Interoperability component and the Analytics components of the DataPorts Platform. This integration
process has been described in the common demonstration of the Data Processing Services. The

D3.5 Data Processing Services M27 71 / 82

A Data Platform for the Cognitive Ports of the Future

demonstration shows a prototype that makes use of real data sources to illustrate the process and it is aimed
to verify its feasibility. Moreover, additional features might be implemented during the integration process
towards the completion of the project’s requirements.

Finally, it is crucial to highlight the next steps related to the Data Processing Services. These steps are mainly

focused on achieving the complete integration of the Data Processing Services with all the components of

the platform and deploying and evaluating the components in the corresponding WP5 pilots. In the period

from the completion of this deliverable (M27) to the final delivery of the platform (M30), the focus will be on

the following actions:

• Support from technical partners in the deployment and use of the data processing services in the

WP5 pilots.

• Integration of the Data Processing Services with Data Governance and Security features according to

the plans described in D3.7 [4] and WP4 deliverables.

• Test and validation of the use of components in the whole platform with all components integrated.

• Issue reporting.

• Maintenance of the components.

• M30 release of the DataPorts platform. The updates in the Data Processing Services will be reported

in the code repositories and in the online technical documentation portal.

D3.5 Data Processing Services M27 72 / 82

A Data Platform for the Cognitive Ports of the Future

10 REFERENCES AND ACRONYMS

10.1 REFERENCES

[1] Watson, R. T., Lind, M., Delmeire, N., & Liesa, F. (2021). Shipping: a self-organising ecosystem. In Maritime
informatics (pp. 13-32). Springer, Cham.

[2] DataPorts Consortium, “D3.1 Data access interfaces” June 2021.

[3] DataPorts Consortium, “D3.4 Permissioned Blockchain network M18” June 2021.

[4] DataPorts Consortium, “D3.7 Permissioned Blockchain network M27” March 2022.

[5] DataPorts Consortium, “D3.6 Data analytics services and cognitive applications M27” March 2022.

[6] DataPorts Consortium, “D2.4 Platform architecture and specifications” December 2021.

[7] DataPorts Consortium, “D2.1 Industrial Data Platforms and seaport community requirements and
challenges” March 2021.

[8] DataPorts Consortium, “D2.2 Scalability, Interoperability and Definition Standards” December 2021.

[9] CIM, “GS CIM 009 - V1.5.1 - Context Information Management (CIM); NGSI-LD API,” 2021.

[10] “BDVA, FIWARE, GAIA-X and IDSA Launch an Alliance to Accelerate Business Transformation in the Data
Economy.”, Online: https://design-principles-for-data-spaces.org/.

[11] “FIWARE for Data Spaces - FIWARE.”, Online: https://www.fiware.org/marketing-material/fiware-for-
data-spaces/.

[12] “smart-data-models/data-models·GitHub.”, Online: https://github.com/smart-data-models/data-
models/blob/master/specs/howto.md.

[13] “smart-data-models/data-models·GitHub.” Online: https://github.com/smart-data-models/data-
models/blob/master/specs/howto_workgroup_to_code_a_datamodel.md.

[14] DataPorts Consortium, “D5.1 Integration, software quality assurance and deployment plan” March 2021.

[15] DataPorts Consortium, “D3.3 Data analytics services and cognitive applications” June 2021.

[16] DataPorts Consortium, “D3.2 Data processing services M18” June 2021.

[17] H. K. Gupta and R. Parveen, “Comparative Study of Big Data Frameworks,” IEEE Int. Conf. Issues
Challenges Intell. Comput. Tech. ICICT 2019, Sep. 2019.

[18] O. C. Marcu, A. Costan, G. Antoniu, and M. S. Pérez-Hernández, “Spark versus flink: Understanding
performance in big data analytics frameworks,” Proc. - IEEE Int. Conf. Clust. Comput. ICCC, pp. 433–442,
Dec. 2016.

[19] J. Veiga, R. R. Exposito, X. C. Pardo, G. L. Taboada, and J. Tourifio, “Performance evaluation of big data
frameworks for large-scale data analytics,” Proc. - 2016 IEEE Int. Conf. Big Data, Big Data 2016, pp. 424–
431, 2016.

[20] D. García-Gil, S. Ramírez-Gallego, S. García, and F. Herrera, “A comparison on scalability for batch big data
processing on Apache Spark and Apache Flink,” Big Data Anal. 2016 21, vol. 2, no. 1, pp. 1–11, Mar. 2017.

[21] C. Johnston, “Routing and Transformation,” Adv. Platf. Dev. with Kubernetes, pp. 337–378, 2020.

[22] I. M. A. Jawarneh et al., "Container Orchestration Engines: A Thorough Functional and Performance
Comparison," ICC 2019 - 2019 IEEE International Conference on Communications (ICC), 2019, pp. 1-6,
doi: 10.1109/ICC.2019.8762053.

D3.5 Data Processing Services M27 73 / 82

A Data Platform for the Cognitive Ports of the Future

[23] A. Corbellini, C. Mateos, A. Zunino, D. Godoy, and S. Schiaffino, “Persisting big-data: The NoSQL
landscape,” Inf. Syst., vol. 63, pp. 1–23, Jan. 2017.

[24] A. Gupta, S. Tyagi, N. Panwar, S. Sachdeva, and U. Saxena, “NoSQL databases: Critical analysis and
comparison,” 2017 Int. Conf. Comput. Commun. Technol. Smart Nation, IC3TSN 2017, vol. 2017-October,
pp. 293–299, Feb. 2018.

[25] “NoSQL Key-Value Database Simplicity vs. Document Database Flexibility | NoSQL Key-Value Database
Simplicity vs. Document Database Flexibility | InformIT.” [Online]. Available:
https://www.informit.com/articles/article.aspx?p=2429466. [Accessed: 19-Apr-2022].

[26] D. Wu, S. Sakr, and L. Zhu, “Big data storage and data models,” Handb. Big Data Technol., pp. 3–29, Feb.
2017.

D3.5 Data Processing Services M27 74 / 82

A Data Platform for the Cognitive Ports of the Future

10.2 ACRONYMS

Acronym List

AI Artificial Intelligence

AMTE Automatic Model Training Engine

API Application Programming Interface

CEF Connecting Europe Facility

CET Central European Time

CSV Comma-separated Values

DAC Data Access Component

DAV Data Abstraction and Virtualization

DoA Description of Action

ETSI European Telecommunications Standards Institute

IDS International Data Spaces

IDSA International Data Spaces Association

JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation for Linked Data

KPI Key Performance Indicator

ML Machine Learning

NaN Not-a-Number / Missing Value

NGSI Next Generation Service Interface

NGSI-LD Next Generation Service Interface for Linked Data

OWL Ontology Web Language

PaFS Pre-processing & Filtering Software

PCS Port Community System

PVCs Persistent Volume Claims

REST Representational State Transfer

RDF Resource Description Framework

RDFS Resource Description Framework Schema

SIC Semantic Interoperability Component

UI User Interface

UML Unified Modelling Language

URN Uniform Resource Name

VDC Virtual Data Container

VDR Virtual Data Repository

D3.5 Data Processing Services M27 75 / 82

A Data Platform for the Cognitive Ports of the Future

WP Work Package

Table 7 – Acronyms

D3.5 Data Processing Services M27 76 / 82

A Data Platform for the Cognitive Ports of the Future

11 ANNEX A: METADATA REGISTRY

The metadata registry data model defines the concepts for “DataSource”, “AgentImage” and
“AgentContainer”.

Figure 61 – Metadata registry data model

Each of the data sources connected to an instance of the DataPorts Platform is represented as a “DataSource”
entity in the metadata registry. Data sources have the following attributes:

Attribute
name

type description mandatory

id text Unique id of the data source (urn format) Yes

type text Predefined value for the entity type that represents
a data source (“DataSource”)

Yes

description text Human-readable description of the data source No

D3.5 Data Processing Services M27 77 / 82

A Data Platform for the Cognitive Ports of the Future

dataProvided object Description of the entities provided by this data
source. It represents the attributes provided by this
data source. This object contains an attribute
named “type”, which provides the value of the
entity type of the data provided by the data source.

Yes

dataModels text Reference to the class of the Data Model (URL of the
JSON schema)

Yes

service text Fiware Service value for the data of this data source
(if different from the default value)

No

servicePath text Fiware ServicePath value for the data of this data
source (if different from the default value)

No

onChain boolean Defines if the data of this data source is stored
locally or on Blockchain. (Default: false).

No

attributes object JSON object describing the attributes defined in the
data source that could be used in the requests to
the On Demand component. These attributes are
defined as parameters in the agent. Each attribute is
defined as “name”:”data type”. If no parameters
can be used for filtering, this object will be empty.

No

mapping object Defines the mapping between the attributes in the
Data Model and the parameters of the agent listed
in “attributes”. If no parameters can be used for
filtering, this object will be empty.

No

Table 8 – Data source metadata

Regarding the agents, they are represented as two different types of entities. The first type is “AgentImage”,
which represents the corresponding docker image for the agent. This type is mainly used for the management
of the on-demand agents, since they are activated when a historical data request is received. An
“AgentImage” entity has the following attributes (Table 9):

Attribute
name

type description mandatory

id text Unique identifier of the agent image Yes

type text Predefined value for the entity type that represents
an agent image (“AgentImage”)

Yes

D3.5 Data Processing Services M27 78 / 82

A Data Platform for the Cognitive Ports of the Future

agentType

text Type of NGSI Agent for this image (“on_demand”) Yes

name text Name of the Docker image Yes

accessURL URL URL for on demand data requests (endpoint of the
Data Access Manager)

Yes

refDataSource Relationship Unique identifier of the corresponding data source Yes

Table 9 – On-demand agent metadata

The other type of entity that has been defined for the agents is “AgentContainer”, which represents an agent
that is running continuously or activates using a scheduler. This type is related to the publish/subscribe agents
and has the following attributes (Table 10):

Attribute
name

type description mandatory

id text Unique identifier of the agent container Yes

type text Predefined value for the entity type that represents
a running agent (“AgentContainer”)

Yes

agentType

text Type of NGSI Agent for this image (“publish-
subscribe”)

Yes

name text Name of the Docker image Yes

refDataSource Relationship Unique identifier of the corresponding data source Yes

Table 10 – Publish/subscribe agent metadata

D3.5 Data Processing Services M27 79 / 82

A Data Platform for the Cognitive Ports of the Future

12 ANNEX B: EXTERNAL EVALUATOR REVIEW

12.1 EXTERNAL EXPERT REPORT

Following recommendations after the first review meeting, the consortium has looked for external opinion
about the choice of technologies used to implement the functionalities foreseen in the DataPorts platform,
specifically the comment was:

“Another recommendation concerns the choice of the technology used to implement some modules. In this
sense, the experts suggest the consortium to look for some professional advice (from technical architects for
example) in order to validate how appropriate those technologies are in the context of a (big) data platform.
For instance, one of the modules includes a software to filter and process incoming data. The technology
chosen is a web application based on the Flask framework, which may not be suitable for handling big volumes
of data.”

The technical architect asked to carry out the evaluation has been Dr. Jordi Arjona Aroca. Dr. Arjona has a

Telecommunications engineering degree by the Universitat Politècnica de València (UPV) in 2008. He has two

MsC, one in industrial computer science, automation and robotics by the UPV and a second one in telematics

engineering by the Universidad Carlos III de Madrid, where he also got his PhD in Telematic Engineering, cum

laude, in 2015 in a joint program with IMDEA Networks Institute. During his PhD he had the opportunity to

spend 6 months in Beijing, in the Institute for Computing Technology (ICT) of the Chinese Academy of

Sciences and of 3 months in IBM India Research Labs.

Besides his PhD position at IMDEA Networks Institute, he worked for 2.5 years as a Postdoctoral Researcher,

and later, as Member of Technical Staff, at Nokia Bell Labs in Dublin. Moving back to Spain, he worked at the

Fundacion Valenciaport for 19 months, before joining ITI in April 2019. During these years he has participated

in numerous European projects, even as a member of the External Advisory Board (RECAP). Similarly, he has

multiple publications in international conferences and journals as well as some patents.

The following subsections collects his thoughts and findings after carefully reading the documentation
available: D2.4 Platform architecture and specifications (M24), D3.5 Data Processing Services (M27) and D3.6
Data Analytics and Services and Cognitive Applications (M27). Each subsection collects feedback component
by component, plus an overall platform analysis in the final conclusion’s sections.

Finally, it is worth mentioning that the analysis has been carried out from a purely big data analysis
perspective, not considering other project requirements. As an example, an IDS architecture implementation
may imply to use a technology not suitable for big data analysis, it may happen that a technology which
satisfies a concrete functionality may be a perfect fit for big data analysis, but incompatible with IDS
architecture. In those cases, an analysis of pros and cons have been carried out together with a benchmarking
exercise to find the most suitable solution for DataPorts. These cases are documented in WP3 deliverables.

12.1.1 Data Access Agents

Data ingestion in DataPorts is performed through the Data Access Agents. The selected tool is Cygnus, from
the FIWARE ecosystem. Cygnus is based on Apache Blume and, hence, using a Source-Channel-Sink approach.
Flume, or in this case Cygnus, is a solid solution for several reasons: Because, apparently, the complexity of
the required data flows is low, only data ingestion is performed, and the work is on a Hadoop ecosystem.
However, it could have been interesting to consider tools like Apache NiFi or, at least knowing why it has not
been considered or why it has been discarded (for instance being an overkill). Considering the whole picture,
e.g., the use of FIWARE components, Cygnus seems a solid and sufficient tool for this task.

D3.5 Data Processing Services M27 80 / 82

A Data Platform for the Cognitive Ports of the Future

12.1.2 Semantic Interoperability

The semantic interoperability component is necessary to ensure that data coming from the different ports
involved in the project is homogeneous from an ontological point of view. Constructing this ontology is
challenging because, even when data in different ports is or should be similar, the degree of digitization is
very heterogeneous and so is the data available. Hence, the subsets of data available in each port may have
had a small intersection. This however should be partially solved, or the impact smoothed, thanks to the
participation of the ValenciaPort foundation, related to the port of Valencia, one of the most important ports
in Europe, highly digitized and that has participated in projects devising partial ontologies on some of the
most common procedures in ports. Assuming, then, that the partners have the knowledge and means to
construct a solid data model, we must focus on the technologies used.

To this regard, the components used in DataPorts make sense from the point of view of their attachment to
the FIWARE ecosystem. DataPorts uses the Orion Context Broker and NGSI specifications. These are widely
known and accepted technologies that are, for instance, key components of the Connecting Europe Facility
digital catalogue. They can be considered as solid components. Similarly, their use jointly with MongoDB
seems solid enough. The main risk could have been that Orion cannot provide the functionality for requesting
historical data, but this has been covered with a component devised and implemented in purpose. These
solutions seem totally valid to, later, provide services or integrate with initiatives like IDSA brokers (to publish
datasets metadata) or CKAN to publish the datasets themselves.

12.1.3 Data Abstraction and Virtualisation

The main technologies involved in the Data Abstracion and Virtualisation component in DataPorts are Apache
Spark, Apache NiFi and MongoDB. The component is well structured and each layer well motivated and with
clear goals defined. The selection of Spark for the Preprocessing and Filtering software (PaFS), focused on
the preprocessing, cleaning, and filtering of data over other tools, such as Flink or Storm, is well justified from
my humble point of view. Apache Spark is a well-known and widely used tool in the BigData community and
I think its use is totally justified here, especially due to its scalability.

The functionality of the Virtual Data Repository (VDR) resembles a data lake. This data lake relies completely
in MongoDB, which is, from my point of view, a perfectly valid and solid solution as it reflects its current
positioning in the market. However, I am surprised that the solution only considers document-based storage.
Although this is also a consequence of the previous layers, totally oriented to this type of data, it is relatively
surprising that no other type of storage has been considered, like for storing objects. In any case, considering
this limitation, the selection of MongoDB as storage technology is completely justified.

Finally, the selection of Apache NiFi and Apache Spark for the Virtual Data Container (VDR) seems to me,
again, to be solid and completely justified, especially considering the ease for interacting with Spark from
NiFi, or the usability of NiFi.

12.1.4 Process Based Analytics

The process-based analytics component is composed by three main subcomponents performing different
types of monitoring: an ensemble predictive process, a prescriptive process, and an explainable predictive
process. These seems to me three valid approaches to put in value the operation of the underlying
components (data access, semantic interoperability, or DAV) moreover considering the kind of data available.
However, I think the analysis we must perform is on the technologies used to do it. To this regard, the use of
TensorFlow and Keras seems a perfectly valid approach, widely used in the community and in more complex
and ambitious projects, that perfectly covers the need of this component. Same applies to the use of Python
or Django.

D3.5 Data Processing Services M27 81 / 82

A Data Platform for the Cognitive Ports of the Future

12.1.5 Automatic Models Training Engine

There are several aspects to look at in this component. Starting with the training web interface, the use of
frameworks like Angular or Django, even when I am not an expert in these matters, seems correct. In
addition, we are talking about frameworks which are, again, widely used in similar circumstances and known
to provide good results. The use of auxiliary tools like PostgreSQL is also justified and I do not think impacts
in a substantial way and, finally, using NodeJS is quite a standard practice as well. Regarding the training
distribution engine, the main technologies to use are Radiatus and Dask. Dask enables the parallelization of
Python code and, given the availability of hardware resources, seems a valid option to easily leverage them
without increasing the complexity on the design of the pipelines, which we will comment later. Radiatus,
although not an extended tool given its early stage (TRL~7), will perfectly meet the purpose for what it is
intended, also allowing a nice management of hardware resources. Coming back to the pipelines, using
statsmodel, scikit learn and similar Python libraries is sufficient and solid, from my point of view, for the
services being proposed.

Finally, we look at data formats and storing technologies. On the one hand, the use of Apache Parquet is
justified, from my point of view, and brings in some advantages over standard row formats or json. Regarding
the storage, I do not think using HDFS is totally justified over other alternatives like Minio. It is true, however
that HDFS is sufficient and works smoothly with other tools used in this component, however, Minio may
have been a better approach.

12.1.6 Final Conclusions

After reviewing the proposed architecture and the different elements in detail, I do not see or think that

there is a technical risk. There can always be opinions on whether this or that piece of software could have

been a better match for a particular functionality but, from my point of view, the selected technologies suffice

to meet the goals of the project.

Moreover, I not only think that the technologies are sufficient considering the different blocks individually,

in isolation, also I do not foresee that there may be problems regarding their integration to have a fully

functional framework. Therefore, my feedback is positive, and I am not concerned about the future success

of the project.

12.2 RESPONSE FROM THE AUTHORS OF THE DELIVERABLE

The authors of the deliverable have considered and appreciated the external expert report. It has offered a
special value to improve the implementation of the platform and check the technical decisions from a purely
Big Data analysis perspective. In any case, these technical decisions at the same time are considering the
other requirements of the platform defined in WP2 of the project. For that reason, the main aim is offering
the implementation of a data exchange and a data sharing platform capable to support the development and
acceptance of both Big Data and AI applications.

As previously explained, this deliverable is focused on the Data Processing Services of the Platform and the
updates of the Data Access component from M18. Therefore, this response is focused on the external expert
report Sections 1.1, 1.2 and 1. 3.

Firstly, as a general comment the following sections of D3.5 are focused on the technical decisions evaluated
in the report:

• Section 4.4: Explains the integration of the on-demand agents with the Data Abstraction and
Virtualization component using Cygnus.

• Section 5.1: Explains the role of the Orion Context Broker in the Semantic Interoperability
Component.

• Section 5.2: Explains the component developed to provide access to on-demand data.

D3.5 Data Processing Services M27 82 / 82

A Data Platform for the Cognitive Ports of the Future

• Section 5.5: Explains the technical decisions taken to provide a common data model for DataPorts.

• Section 6.2: Offers the conclusions of the comparative analysis carried out, concerning various Big
Data frameworks, to implement the DAV component.

Secondly, for further clarification, two comments of the report need a more specific and explicit response.
These comments are the following:

• “However, it could have been interesting to consider tools like Apache NiFi or, at least knowing why
it has not been considered or why it has been discarded (for instance being an overkill). Considering
the whole picture, e.g., the use of FIWARE components, Cygnus seems a solid and sufficient tool for
this task.”

From the authors perspective persisting historical data is useful for Big Data analysis. Different
components have been considered to perform this task. For example, tools like Apache Flume, Kafka,
and NiFi offer great performance, can be scaled horizontally, and have a plug-in architecture where
functionality can be extended through custom components. Mainly, the final decision was centred
between the components offered by the Fiware ecosystem for data persistence. There are two of
these components: (i) Cygnus, which uses Apache Flume technology, and (ii) Draco, which uses
Apache Nifi technology cited by the external expert.

The selection of the tool depends on the platform’s needs. On the one hand, Cygnus is configured
via configuration files. On the other hand, Draco offers a graphical interface to set up and monitor
the procedure. In this situation there was no need of a configuration via a graphical interface; in fact,
the developers indicated that this would have made the process of integrating the agents on-demand
with DAV more complex. Therefore, the technology selected was Cygnus due to its simplicity.

However, both technologies can be interchangeable. For that reason, if necessary, in the future it
may also be considered to offer on-demand agent integration with Apache Nifi (Draco) to perform
this task.

• “However, I am surprised that the solution only considers document-based storage. Although this is
also a consequence of the previous layers, totally oriented to this type of data, it is relatively surprising
that no other type of storage has been considered, like for storing objects. In any case, considering
this limitation, the selection of MongoDB as storage technology is completely justified.”

From the authors perspective a document-based NoSQL database seems to be the optimum choice
to implement the temporary data storage (VDR) inside the DataPorts Platform, according to the
nature of the data that need to be handled. In fact, this type of database is ideal for semi-structured
data without a fixed schema, but complying with certain formatting rules, such as XML, JSON, and
BSON. In contrast, a relational database would require full knowledge of the incoming datasets
structure beforehand, thus limiting the ability to store datasets with different schemas [23]. Since
the data -in the context of DataPorts- are represented in JSON format, document-based storage
should be selected, due to its high performance, flexibility, and scalability [24]. Compared to key-
value NoSQL databases, document-based are preferable, to support different types of entities and
enable complex querying, a feature that the platform should provide [25]. Considering opting for
object-based storage, this architecture is generally more suitable for archiving large scale
unstructured data such as photos, songs, etc., which is not the case in DataPorts [26].

Finally, even though this document corresponds to the final version of the implementation of the D3.5

components, in the coming months any technical change detected in the platform evaluation process or in

the deployment of the use cases will be detailed in the online documentation of the platform and

dissemination materials of the DataPorts project.

